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Abstract: Upper Mahaweli basin is the origination of the main water source of Sri Lanka which is the Mahaweli 

River. Therefore it is a timely requirement to identify the future climate trends on the basin, to take suitable 

adaptation strategies. Statistical Downscaling model (SDSM) was used to predict future rainfall patterns of the 

study area. Observed point rainfall data of ten gauging stations within the study area and Global Climate Model 

(GCM) data of Hadley Centre Coupled Model, Version 3 (HadCM3) were used for model calibration and validation 

processes. A representative data set for the study area was generated using Thiessen polygon method from the 

observed rainfall data of selected gauging stations. Quality of the input data was checked prior to the model 

calibration. Daily rainfall was forecasted from 1961 to 2099 under A2 (high emission scenario) & B2 (low emission 

scenario) defined by Intergovernmental Panel on Climate Change (IPCC). Under A2 scenario the total annual 

rainfall, maximum annual rainfall and annual averaged daily rainfall show an increasing trends and under B2 

scenario all the above mentioned parameters show decreasing trends. But the recorded decreasing trends are 
insignificant. 
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1. Introduction 

 

The climate affects to mankind in a wide variety of 

ways mainly through precipitation and solar 

radiation. The climate change phenomenon has 

become a major concern in modern world due to its 

adverse effects.Climate change prediction is 

important to understand accompanied impacts and 

necessary adaptation to minimize adverse impacts. 

Simulating the natural atmosphere by using 

computer models is the main tool that is used for 

climate prediction.  
 

General Circulation Models or Global Climate 

Models (GCMs) are mathematical models used to 

simulate the natural atmosphere. GCM outputs 

cannot be used directly due to the mismatch in the 

spatial resolution between GCMs and hydrological 

models. Then the process of downscaling is 

required to match those spatial resolutions. In order 

to understand climate change impacts at basin scale 

GCMs data are downscaled using standard 

downscaling methods.  

 

There are two standard downscaling methods 

namely Dynamical Downscaling (DD) and 

Statistical Downscaling (SD). Dynamical 

Downscaling (DD) generates regional scale 

information using Regional Climate Models 

(RCM) with coarse GCM data used as boundary 

conditions and Statistical Downscaling (SD) 

develops quantitative relationships between large 

scale atmospheric variables (predictors) and local 

surface variables (predictands) by using statistical 

methods [1]. 

 

Statistical downscaling methodologies have several 

practical advantages over dynamical downscaling 

approaches. In situations where low–cost, rapid 

assessments of localized climate change impacts 

are required, statistical downscaling represents the 

more promising option [2]. 

 

Statistical Downscaling model (SDSM) is a 

combination of Multiple Linear Regression (MLR) 

and the Stochastic Weather Generator (SWG). 
Quality control, Transform data, Screen variables, 

Calibrate model, Weather generator, Summary 

statics, Frequency analysis, Scenario generator, 

Compare results and Time series analysis are the 

key functions of the SDSM model. 
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SDSM model was used by Dharmarathna [3] to 

select adaptation measures to sustain rice 

production in Kurunagala District under the 

impacts of climate change. Minimum and 

maximum temperature and rainfall data were 

downscaled from GCM outputs and the forecasted 

daily maximum and minimum temperatures 

showed an increasing trend under both A2 and B2 

scenarios while annual rainfall did not show a 

significant increasing or decreasing trend. 

 

De Silva [4] used the SDSM model to downscale 

past and future GCM data available at a coarse 

resolution to the Kelani basin. In this analysis the 

Kelani basin was divided into two sub basins as 

lower basin and upper basin. Total annual rainfall 

was shown an increasing trend for both upper and 

lower basins under high and low emission 

scenarios. 

 

2. Study Area and Methodology 

 

The area up to the Polgolla barrage of Mahaweli 

basin which covers an area of 788 km
2
 was 

selected as the study area. Observed rainfall data of 

ten gauging stations were used for models 

calibration and validation. Figure 1 illustrates the 

study area and selected gauging stations. 

 

 
 

Figure 1: Study area and gauging stations 

 

Observed point rainfall data were spatially 

distributed over the basin area by Thiessen polygon 

method and one representative data set for whole 

study area was generated to feed to the SDSM 

model. 

Statistical Downscaling Model (SDSM) version 

4.2.9 was used for climate modelling and rainfall 

was forecasted up to year 2099 using GCM data. 

GCM data were downloaded from Canadian 

Climate Scenarios Network [5]. National Centers 

for Environmental Prediction (NCEP_1961-2001) 

data set was used to calibrate and validate the 

model. Then for future rainfall predictions, Hadley 

Centre Coupled Model, Version 3 (HadCM3) data 

sets for A2 and B2 scenarios (H3a2a_1961-2099 

and H3b2b_1961-2099) were used. 

 

Future forecasts of annual averaged daily rainfall, 

annual maximum daily rainfall and monthly 

averaged total precipitations were made under to 

different emission scenarios namely A2 scenario 

(high emission case) and B2 scenario (low 

emission case) of IPCC. 

 

2.1 Model Preparation  

Modelling process was set as conditional which 

assumes an intermediate process between regional 

forcing and local weather. Forth root 

transformation was used to convert the skewed 

rainfall distribution into a normal distribution. The 

value of variance inflation, which controls the 

magnitude of variance inflation in downscaled 

daily weather variables, was set as 18 and the value 

of bias correction, which compensates for any 

tendency to over– or under–estimate the mean of 

conditional processes by the downscaling mode 

was set as 0.8. 

 

2.2 Model Calibration 

Rainfall data from 1971 to 1986 were used for 

model calibration. The Screening Variable option 

was used in the choice of appropriate downscaling 

predictor variables for model calibration. Table 1 

illustrates the selected predictor variables among 

the available 26 variables in SDSM model for the 

Upper Mahaweli basin. 
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Table 1: Selected predictor variables for model 

calibration 

 

The simulated values of annual averaged daily 

rainfall, annual maximum daily rainfall and 

monthly averaged total precipitations were used to 

compare with observed rainfall data. Further, the 

number of dry days of simulated and observed 

were compared for the above time period. Figure 2 

illustrates the comparison done for annual 

averaged daily rainfall. 

 

Figure 2: Variation of annual average daily rainfall 

 

The Mean Model Error Percentages (MME %) 

were calculated to compare the simulated (SR) and 

observed (OR) rainfall values.  

 

MME % = (SR − OR) / OR   100 %                (1) 

Figure 3 illustrates the calculated MME 

percentages for annual averaged daily rainfall 

under two emission scenarios. 

 

 

 
 

Figure 3: MME% for annual averaged daily 

rainfall 

When calibration period is considered averaged 

mean model error % values were 13, 13 and 18 for 

averaged annual daily rainfall, monthly rainfall and 

number of dry days respectively under A2 

emission scenario. Under B2 scenario respective 

values were 12, 13 and 15. 

 

3.3 Model Validation 

Observed rainfall data from year 1986 to 1993 (8 

years) were used to validate the model by keeping 

the same values for variance inflation and bias 

correction which were used in model calibration 

stage. Figure 4 shows the comparison between 

observed and simulated rainfall values for 

validation period. 

 

Figure 4: Model validation – Annual averaged 

daily rainfall 

 

When validation period is considered averaged 

MME % values were 10, 17 and 10 for averaged 

annual daily rainfall, monthly rainfall and number 

of dry days respectively under A2 emission 

scenario. Under B2 scenario respective values were 

12, 13 and 8. 

 

 

Predictor 

Variable 
Description 

ncepp_fas.dat Surface airflow strength 

ncepp_zhas.dat Surface vorticity 

ncepp5_fas.dat 500 hPa airflow strength 

ncepp5_uas.dat 500 hPa zonal velocity 

ncep5_zas.dat 500 hPa vorticity 

ncepr850as.dat 850 hPa geopotential height 

nceprhumas.dat Near surface relative humidity 

ncepshmas.dat Surface specific humidity 
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3. Results and Discussion 

 

Calibrated model was used to forecast daily rainfall 

from 1961 to 2099 under both A2 and B2 

scenarios. Following figures illustrate the Time 

Series Graphs (TSG) derived for annual average 

daily rainfall, annual total rainfall and annual 

maximum rainfall under both A2 and B2 scenarios 

for the study area.  

 

Figure 5: TSG of annual average daily rainfall 

 

Figure 6: TSG of annual total rainfall 

Figure 7: TSG of maximum annual rainfall 

 

Best fit lines for each time series plot under both 

A2 and B2 scenarios were generated to identify the 

trend of each variation. Figure 8 and Figure 9 

illustrate the best fit lines generated for annual total 

precipitation under A2 & B2 scenarios. 

  

 

Figure 8: Best fit line for annual total precipitation 

under A2 scenario 

 

Figure 9: Best fit line for annual total precipitation 

under B2 scenario 

 

Annual total precipitation, maximum annual 

rainfall and annual averaged daily rainfall show an 

increasing trends of 0.7 mm per year, 0.1 mm per 

year and 0.002 mm per year respectively under A2 

scenario. Under B2 scenario all above mentioned 

parameters illustrate decreasing trends of 0.3 mm 

per year, 0.15 mm per year and 0.001 mm per year 

respectively. 

     

4. Conclusions 
 

Annual total precipitation, maximum annual 

rainfall and annual averaged daily rainfall show 

increasing trends under A2 scenario and 

decreasing trends under B2 scenario. But the 

recorded decreasing trends are insignificant. 
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