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Abstract: Vibration characteristics of steel framed structures are affected by accurate modelling of the mass and 

stiffness matrices of beam and column members. In this regards, wide flange sections are the most popularly used 

steel sections, and calculation of axial, flexural and shear responses of these sections become critical. In this study, 

a mixed formulation frame finite element is developed from three-fields Hu-Washizu-Barr functional. Consistent 

mass matrix of the element is obtained such that determination of vibration frequencies of members with varying 

geometry and material distribution is modelled without any need for specification of different displacement shape 

functions for each individual case. An accurate shear correction coefficient for wide flange I and H sections is taken 

into account in order to get closer match with exact solutions. Comparative study is undertaken by the use of 

proposed beam finite element solutions and 3 dimensional solid finite element analyses in ANSYS. Results indicate 

that proposed beam finite element can get fundamental and higher modes of vibration for varying aspect ratios of 

wide flange beams and columns. 
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1. Introduction 

 

The strength of the members in a structure 

determines the performance of the whole system. 

Likely, deformations have crucial influence on the 

serviceability of the structures, where different 

types of deformations have consequential effects 

on each other due to the continuum phenomenon of 

the bodies. Shear deformations can be crucial for 

the determination of the lateral flexibility of steel 

moment resisting frames. The study by Charney et 

al. [1] clearly shows the effects of shear 

deformations for various structural steel beam and 

column sections. Consideration of the shear effects 

on the members are provided via the definition of 

effective shear area. The studies on the shear 

effects of the cross sections on linear basis [2] or 

nonlinear basis [3, 4] presented various ways to 

take into account such effects.  

 

In this study, the members examined in [1] that are 

W36x135, W24x250 and W14x730 sections and 

European sections that are HEB180, IPE270 and 

IPE750x147 are modelled with ANSYS [5] finite 

element program to verify the performance of the 

proposed beam model in this paper. The beam 

finite element model proposed in this research 

study relies on Hu-Washizu-Barr variational. In 

order to calculate an accurate stiffness and mass 

matrix, force-based interpolation functions are 

used, and the shear correction coefficient suggested 

by [1] is adopted. 

 

2. Frame Element Formulation 

 

2.1 Kinematic Relations 

 

Displacements on a material point on the section of 

a beam that deforms in xy-plane can be obtained 

through Timoshenko beam theory as follows; 
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where ux(x,y) and uy(x,y) are the displacements in x 

and y directions, respectively of any point in the 

section. u(x) is the displacement of the point (x,0) 

along x-axis. v(x) is the transverse deflections of 

the point (x,0) from x-axis in y direction. (x) is the 

small rotation of the beam cross section around z-

axis.  

 

The non-zero strain components ε  include the 

normal strain in the x direction and shear strain 

with xy component, where these are calculated 

from section deformations as follows; 
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where ( )xe  is the section deformation vector given 

as follows; 

 

 
T
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(3) 

 

In Equation (3), a(x) is the axial strain of the 

reference axis, (x) is the shear deformation along 

y-axis and  is the curvature about z-axis. Section 

deformations can be easily obtained from section 

reference displacements through a one to one 

comparison of the terms in Equation (2). 

Furthermore, section compatibility matrix, as(y,z) 

introduced in Equation (2) is written as follows; 

 

s

1 0
( , )

0 1 0

y
y z

 
  
 

a

                          

(4) 

 

2.2 Basic System without Rigid Body Modes and 

Force Interpolation Functions 

 

Element formulation is proposed in xy-plane, 

where the formulation considers two end nodes and 

relies on a transformation from complete system to 

basic system. In the whole structure, the element 

has 3 degrees of freedom (dof) per node, resulting 

in 6 dofs in total, where the nodes are placed at 

element ends. The complete system is proposed 

such that the axis of the element is aligned with 

horizontal x-axis. The basic system is prescribed 

for the purpose of removing rigid body modes of 

motion, and the basic system is chosen as the 

cantilever beam as shown in Figure 1, where the 

fixed and free ends are the left and right ends, 

respectively. The transformation matrix, a for an 

element with length L is used to relate element end 

forces in complete system to basic element forces 

as follows; 
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Figure 1:Cantilever basic system forces and 

deformations 
 

It is also possible to relate basic element 

deformation vector v to displacements in complete 

system by separating 3 rigid body modes and 

keeping only the basic deformation modes for the 

element. By this way, it is feasible to derive 

flexibility matrix that would have been impossible 

to get in the complete system because of the 

singularity caused by rigid body modes. Basic 

element deformations v can be calculated from 

nodal displacements u in complete system as 

follows; 

 

v au                                        (6) 

 

Basic element forces at free end, q are shown in 

Figure 1 and given in Equation (5). These forces 

can be related to internal section forces, ( )xs  by 

using the force interpolation matrix ( , )x Lb  for the 

cantilever beam configuration as follows;  
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(7) 

 

By using Equation (7), it is possible to attain exact 

equilibrium between the forces at free end of the 

element and forces at any section that is x units 

away from the fixed end. Section forces are axial 

force ( )N x , shear force in y direction ( )V x , and 

moment about z-axis ( )M x . In above equation 

 xs
p

 is the particular solution for uniformly 

distributed loads in the axial and transverse 

directions, i.e. wx and wy, respectively. By the way, 

with this approach, it is easy to calculate the 

particular solution under arbitrary inter element 

loads that are concentrated or distributed. 
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2.3 Variational Base and Finite Element 

Formulation of the Element 

Variational form of the element is written by 

considering independent element nodal 

displacements u, element basic forces q, and 

section deformations e by using three-fields Hu-

Washizu functional and implemented as part of 

beam finite elements by Taylor et al. [6] and 

Saritas and Filippou[7]. Extension to dynamic case 

is achieved through introduction of inertial forces 

mu  acting at nodes by considering D’Alembert’s 

principle to get the following variational form of 

the element 
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Above equation can also be obtained by 

considering the general Hu-Washizu variational 

form with extension to dynamic case by Barr [8]. 

Equation (8) should hold for arbitrary u , q  and 

e , thus the following three equations should be 

satisfied in order for the Hu-Washizu-Barr 

variational to be zero.  

 

T
g; whereapp m pu p p a q

              
(9) 

 

T
g

0

( , ; w) h re) e(
L

x L x dx v b e v a u

       

(10) 

 

 ˆ( ( )) ( , )x x L x s e b q s p
                   

(11) 

 

Equation (9) is the equation of motion that holds 

for linear or nonlinear material response, and this 

equation can be collected for each element to get 

structure’s equation of motion. A numerical time 

integration scheme can be employed to get a 

solution. Consequence of viscous damping can be 

simply achieved by adding cu  to the left hand side 

of the equation, where c is the damping matrix. It 

is also possible to determine resisting forces p not 

only in terms of displacements u but also as a 

function of velocities u  through the use of a 

material model that considers time-dependent 

effects, such as visco-elastic or visco-plastic 

material models. 

For linear elastic material response, section 

deformations can be calculated as e=ks
-1ŝ to obtain 

the section deformations from section forces 

through the use of section stiffness matrix ks. 

Substitution of section deformations e to Equation 

(10) gives: 
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In above equation f is the flexibility matrix of the 

element in the basic system. fs is the section 

flexibility matrix that can be calculated from the 

inversion of the section stiffness matrix ks. Further 

substitution of above equation for linear elastic 

response in Equation (9) results in 

 

T 1; whereapp
 u ku km p a f a

         
(13) 

 

where k is the 6×6 element stiffness matrix in the 

complete system.  

 

As a remark, Equations (10) and (11) are related to 

the element state determination, i.e. these equations 

can be solved independent of Equation (9), and 

then the solution can be condensed out into 

Equation (9) such that the equations of motion can 

be assembled for all elements. This process was 

demonstrated above for the linear elastic case. In 

general, state determination of the element requires 

an iterative solution in the case of nonlinear 

behavior, where Equations (9) to (11) are needed to 

be solved. This solution requires also the 

calculation of element flexibility matrix f under 

nonlinear response, where taking derivative of 

element deformations v in Equation (10) with 

respect to element forces q results into the same 

flexibility integration expression given in Equation 

(12), but this time the section stiffness will be 

nonlinear, as well.  

 

2.4 Section Response 

 

Section response can be obtained by the basic 

assumption that plane sections before deformation 

remain plane after deformation along the length of 

the beam by the use of following section 

compatibility matrix as given in Equation (2), 

where the section compatibility matrix now 

contains the shear correction factor s as follows 
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Shear correction factor s is taken as the inverse of 

the form factor suggested by Charney et al. [1] for 

I-sections: 

 

1/ ; where =0.85+2.32
f f

s

w

b t
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In above equation, bf  and tf stand for the width and 

thickness of flange, respectively; d is the depth of 

the section and finally tw is the thickness of the 

web.  

 

The section forces are obtained by integration of 

the stresses that satisfy the material constitutive 

relations ( )σ σ ε  according to  
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The derivative of section forces from (16) with 

respect to the section deformations results in the 

section tangent stiffness matrix 
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The material tangent modulus km is obtained from 

the stress-strain relation according to km=∂σ(ε)/∂ε. 

Gauss-quadrature, the midpoint or the trapezoidal 

rule can be used for the numerical evaluation of the 

integrals in (16) and (17). While Gauss-quadrature 

gives better results for smooth strain distributions 

and stress-strain relations, the midpoint rule is 

preferable for strain distributions and stress-strain 

relations with discontinuous slope. 

 

2.5 Force-Based Consistent Mass Matrix 

 

The derivation of the consistent mass matrix 

requires the determination of the section mass 

matrix, where the mass is considered like a 

distributed load along the length of the beam in 

cantilever basic system for this derivation. The 

section mass matrix is easily computed by the 

following equation through the use of section 

compatibility matrix that is given in Equation (4) 

without the presence of shear correction: 
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Mass matrix of the force-based element, which will 

be used in Equation (9), is written in 6×6 

dimension by the method provided by [9], i.e. in 

the complete system with 3 degrees of freedom per 

node, as follows: 
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where the components of element mass matrix are 

calculated from following sub-matrices  
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In above equations, element flexibility matrix f is 

obtained as given in Equation (12). The partial 

flexibility matrix fp is calculated as follows: 
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3. Numerical Examples 
 

In this paper, for the numerical example, the 

proposed model is verified with the 3D model 

created in ANSYS environment. For the 
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verification of the proposed model, the section 

used in the study given in the literature [1], i.e. 

W36x135, W24x250 and W14x730 sections and in 

addition European sections HEB180, IPE270 and 

IPE750x147 are considered. For the verification of 

the proposed model different types of sections are 

utilized. ANSYS model could be accepted as 

control model of this study. 
 

To have a fair comparison with the model data, the 

use of solid finite elements is a suitable modelling 

approach for simulation. For this purpose, the 

ANSYS Workbench Design Modeller is selected to 

perform 3-D finite element analyses after 

implementing bodies geometries and utilizing 

certain mesh conditions. In such a numerical 

model, modelling approximations would have 

great influence on the finite element analysis, like 

the considered element type, meshing elements 

number and size, boundary conditions and 

environment representations.  

 

 
 

Figure 2: Representative ANSYS model sketch for 

one section  

 

During the geometry implementation of the wide 

flange beams, 1 mm thick stiffeners, with very low 

mass density 1E-10 kg/m3, are supplemented along 

the length of the elements to constraint the flanges 

and reduce their inordinate behaviour relatively; 

adopting such flange constraining approach   

converges to a more realistic behaviour of wide 

flange beams in structures. This way mode 

stabilization is achieved, where capturing clear 

axial, bending and shearing modes become 

possible for ANSYS simulations. The beam 

elements and the stiffeners in ANSYS model are 

both considered of solid type. After the geometry 

employment, quadrilateral mesh is generated using 

Solid187. This method uses linear elements to just 

obtain the correct results using the enhanced strain 

formulation. In the beams models, the number of 

mesh elements used changes from a test to another, 

but as a common value, the element size is set to 

0.03 for all the beams. Yet, to set up conformal 

meshing among the body parts of the beams, the 

available Shared Topology tool is used to share 

faces and edges creating an analogous topology. 

 
 

Figure 3: Natural frequency proposed over ANSYS 

result ratios for W-Section profiles  

 

 
 

Figure 4: Natural frequency proposed over ANSYS 

result ratios for European section profiles  

 

Figures (3) and (4) represent the ratio of the 

frequency results obtained by proposed model to 

ANSYS model. Here, in this study, the ANSYS 

FEM model is considered as control model, i.e. 

numerically converged exact solution for 

comparison. Thus, the ratio will represent the error 

between these control models and proposed model 

presented in this paper.  

 

The results of the cantilever beams are represented 

separately for its first, second bending and axial 

modes of beams for different length over depth 

ratios. For the two groups of cross-sections, that 

are taken from study [1] and European sections, 

chubby and moderate sections represent 

significantly low errors, however, for the deep 

sections, approximately 10% error is obtained for 

smaller length over depth ratios. Yet, the effect of 



 

37 
 

the shear can be better observed for the short 

beams, the effect on the deep sections should be 

further investigated. 

 

 

4. Conclusions 

 

The aim of this study is to gather and verify the 

modal behaviour of various I-sections under 

different length over depth ratios with the proposed 

beam finite element model.  

 

The result of the study shows that the proposed 

model has satisfactory accuracy in capturing the 

real behaviour according to the verification carried 

on control models in ANSYS. The results prove 

that the error between the ANSYS model and 

proposed model is low and biased. However, the 

deep sections for both groups of sections, 

represents relatively larger errors, around 10%, 

which needs to be assessed in detail. Introducing 

stiffeners to the ANSYS model prevents the local 

modal deformations along the sections such as 

flange deformations independent from the bending 

deformations. Such deformations resulted into 

higher errors with the proposed model, since the 

proposed model can only show 2D frame 

deformation except from 3D local deformations 

like the results of the ANSYS FEM. For a fair 

comparison between a beam finite element model 

and 3D finite element models, it is necessary to 

define both top and bottom flanges and the web act 

together. 
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