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Abstract: Meta-modeling theory is aimed at constructing a set of analysis models which are consistent with continuum 
mechanics or a solid element model. This paper presents a consistent mass spring model (CMSM) of a large scale 
bridge structure, which is constructed according to the meta-modeling theory to make efficient seismic response 
analysis. The CMSM shares the same dynamic characteristics as the solid element model and can be used to study 
fundamental seismic responses for a complicated large scale bridge structure that consists of piers and decks. In the 
numerical experiment, time history analysis is made for six different bridge structures. Full comparison is made for a 
CMSM and a solid element model of these six bridge structures, and it is shown that the CMSM is able to estimate 
the dynamic responses such as displacement and base shear for a certain class of ground motions.  
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1. Introduction  
  
Construction of a few different fidelity models at the 
beginning of complex structure’s analysis [1, 2] is a 
common practice among present engineers. If a 
numerical model of desired fidelity could be 
constructed for a target structure, we can choose a 
suitable analysis method and operate numerical 
simulation that uses the analysis model and the 
analysis method. Such model selection is very 
important especially for a dynamic seismic analysis 
of large structure which requires larger numerical 
computational resources as compared to a 
quasistatic analysis of small structure.  
  
The fidelity of the model and accuracy of analysis 
are directly related which means that the highest 
fidelity model should have highest accuracy among 
a set of models which is developed for a particular 
structure. However, different fidelity models ought 
to share the fundamental dynamic characteristics 
such as natural frequency. It is meaningless to 
compare seismic responses of models which have 
different fundamental dynamic characters.  

  
Mass spring model is popular on account of its 
simplicity and conservative response predictions, 
see references [3, 4, 5, 6]. For typical mass spring 
model, the target structure is discretized with set of 
beam elements. The lumped mass for each node of 
spring mass model is estimated from the portion of 
the weight of target structure, which is called 
“tributary area consideration”. There are mainly two 
ways to estimate stiffness of spring in typical mass 
spring model, which are; static and geometric 
methods [3, 7]. The static method uses an arbitrary 
static load applied to a single layer of the full (3D) 
finite element model, it works as a pushover analysis 
[8, 9], while the geometric method considers the 
geometric shape of the cross-section to calculate 
sectional moment of inertia and shearcoefficients.  
  
An issue with the ordinary mass spring model 
discussed above is that it does not consider the 
consistency with other more sophisticated models. It 
is easy to reproduce observed or synthesized 
dynamic response by tuning of mass spring model’s 
parameters (mass and stiffness) for particular input 
motion but it may not be applicable for other input 
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motions. However, construction of a consistent mass 
spring model; the one having same fundamental 
dynamic characteristics as more sophisticated 
models, is surely desirable.  
  
The authors are proposing meta-modeling theory 
[10, 11, 12, 13, 14, 15], which allocates structural 
mechanics as mathematical approximation of 
solving a Lagrangian problem of continuum 
mechanics. The key concept of meta-modeling is 
that the same physical problem of continuum 
mechanics is solved by all modelings using distinct 
mathematical approximations. Therefore, it is well 
expected to construct a mass spring model of the 
same fundamental dynamic characteristics as a 
continuum mechanics model, according to the 
metamodeling theory.  
  
This paper aims to apply meta-modeling based 
consistent mass spring model (CMSM) for 
fundamental seismic response analysis of six bridge 
structures with different pier arrangements. The 
contents of this paper are as follows. In Section 2, 
meta-modeling is briefly explained and in Section 3, 
the approximations made for deriving the governing 
equations of the CMSM from continuum mechanics 
theory are presented. In Section 4, we carry out the 
numerical experiment to obtain the fundamental 
seismic response for six multi-span bridge structures 
by employing CMSMs. Concluding remarks are 
made at the end in section 5.  
  
  
2. Meta-modeling theory  
  
In the meta-modeling theory, modeling means to 
create a mathematical problem for a target physical 
problem. There are many ways to develop a distinct 
mathematical problem, depending on the accuracy 
that is expected in solving the physical problem. The 
meta-modeling theory delivers a set of consistent 
modelings which produce an approximate solution 
of the original modeling. As an example in structural 
problems, the meta-modeling theory uses continuum 
mechanics modeling as the basic modeling. Some of 
the structure mechanics modelings are specified as 
consistent modelings of the continuum mechanics 
modeling. Then, those consistent structure 
mechanics modelings produce an approximate 
solution of the continuum mechanics modeling.  
  
For simplicity, we assume small deformation, 
dynamic state, and linear isotropic elasticity. A 
boundary value problem of solid continuum 

mechanics is converted to a variational problem of 
using a Lagrangian,  

 ,  (1)  
where � is velocity, � is density, � is strain tensor 
and � is elasticity tensor; for a given displacement 
vector, �, � is computed as �	�	������� where ��� 
stands for the symmetric part of the secondorder 
tensor of �� and � stands for spatial differentiation 
operator; and � is the analysis domain.  
  

In structural mechanics, the integral of , (i.e., 

strain energy density) is replaced by, say, , for 
bar theory [16], where � is a normal strain 
component and � is Young’s modulus. This strain 
energy density corresponds to a stress-strain relation 
of �	�	��, where � is normal stress component in 
the same direction as �. However, for this stress 
strain relation to hold, normal strain components in 
the transverse directions are non-zero. Therefore, �	
�	 �� is often regarded as an assumption of one 
dimensional stress-strain relation. It is not 
acceptable to make an assumption which is not 
experimentally validated. As mentioned, �	 �	 �� 
holds when transverse normal strain components are 
non-zero, but the presence of these components are 
ignored. Meta-modeling replaces the integrand and 
changes the Lagrangian in the following form:  

 (2)  

,  
where � is stress tensor and ��1 is the inverse of �. 
By selecting � as a unique non-zero component of 
�, without making any assumption, we can derive �	
�	�� from ��∗	�	0 with respect to � (or �) for quasi-
static state.  
  
The use of the Lagrangian of Eq. (2) is the basic 
concept of meta-modeling. The governing equations 
of beam theory and plate theory are derived from this 
�∗, just by using a suitable subset of the function 
space of ��,�, from which the arguments of �∗, i.e., � 
and �, are computed. We have to emphasize that 
there is no need to make a physical assumption of �	
�	 ��, (which is not experimentally validated), in 
deriving the governing equations. We regard using a 
subset of ��,	�� to solve ��∗	�	0 as mathematical 
approximation.  
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3. Consistent mass spring model  
  
A mass spring model is a set of masses and linear 
springs, and the direction of the mass movement is 
fixed. As the simplest case, we study a mass spring 
model which consists of two masses. We seek to 
construct a mass spring model which shares the same 
fundamental dynamic characteristics as continuum 
mechanics; this model is called consistent mass 
spring model (CMSM).  
According to the meta-modeling theory, we consider 
an approximate displacement function of the 
following form:  

2 

 ��,	��	�	∑	������	���,  (3)  
��1 

where �� is displacement of the α-th mass point and 
�� is the corresponding displacement mode. By 
definition, the displacement is required to satisfy the 
following two requirements:  

A1)  ���� is a unit vector.  
A2)  ���� vanishes for �	�	�.  

Here, �� is the location of the α-th mass point. We 
substitute Eq. (3) into Eq. (1), and obtain  

 ,  (4)  
where  

���	�	����:	�:	���	d�. 
							� 

Since a Lagrangian of a conventional mass spring 
model of two masses is in the form of  

 
with �∙� being a suitable scalar, � of Eq. (4) becomes 
the above, if the following two requirements are 
satisfied:  

B1)  �12	�	0.  
B2)  �12	�	�22	�	0.  

It is readily seen that finding two functions �1 and 
�2 which satisfy the four conditions of A1, A2, B1 
and B2 is generally not possible.  
  
Now we can consider dynamic mode shapes to 
construct a mass spring model, so that it shares the 
same dynamic fundamental characteristics with a 
continuum model. We suppose that two dynamic 
modes  or 2), are given; �� is a 

mode shape and �� is a natural frequency. Recall 
that the dynamic mode satisfies  

����2��	�	�	∙	��:	����	�	0,   (6) 

and  

  
for �	�	�.  
  
We can use Eq. (1) or (2) but for simplicity, we use 
� of Eq. (1), and, substituting �	�	∑	���� into it, we 
obtain 

 
where  
 

(9)  
  

Due to the orthogonality, Eq. (7), ���� does not 
produce cross terms. Furthermore, due to Eq. (6), it 
is readily seen that �� and �� of Eq. (9) satisfy  

����2��	�	��,               (10) 

for �	�	1 and 2.  

  
Now, we seek to find suitable linear combinations of 
���� that satisfy the requirements A1 and A2. To 
this end, we consider the following combination:  
 ��	�	∑	���	��,  (11)  

where ��� is a component of two-by-two matrix. It is 
readily seen that this matrix can be determined when 
�1 and �2 do not change the direction and are 
parallel to each other.  
  
  
4. CMSM for bridge structures  
  
4.1 Problem setting  
  
As a more realistic example, a CMSM is constructed 
for a set of multi-span curved and straight 
continuous bridge structures. Three curved and three 
straight bridge structures with different types of pier 
arrangement are studied; see Figure 1. The 
longitudinal and transverse directions are considered 
separately in this numerical study. The CMSM for 
the transverse direction includes two dynamic 
modes while that for the longitudinal direction uses 
only first mode. This is because in the longitudinal 

(5) 

(8) 
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direction, the first mode has much lower natural 
frequency than other modes.  
  
A schematic view of the CMSM with the third spring 
that connects the top mass to the ground is shown in 
Figure 2. The stiffness values, �1,	�2 and �3, are 
computed as follows:  

�1	�	�22	�	�12,	�2	�	��12,  

and			K	3	�	�11	�	�12.  
  
Tie connection is used for the connection between 
the pier and the deck in this problem. This is the 
simplest connection, and more sophisticated 
connection could be used if more detailed 

information is available for the connection. Table 1 
shows the material properties of both the pier and the 
deck. Linear isotropic elasticity is assumed. The 
ground motion displayed in Figure 3 is employed. 
frequency domain.  

  
First, we construct a solid element model, in order to 
obtain first two dynamic mode shapes in the 
transverse direction (�1� and �2�) and first dynamic 
mode shape in the longitudinal direction ( ); see 
Figure 4(a) and 5(a) for �1� and �2� of cases SC_1 
and CC_1 respectively. Approximate displacement 
functions (�1� and �2�) of cases SC_1 and CC_1 for 
transverse direction are shown in Figure 4(b) and 
5(b) respectively. Second, we determine locations of 

 
 (a)  (b)  
Figure 1: Geometric and mass points’ information about multi-span bridge structures: (a) straight 
continuous (SC); and (b) curved continuous (CC).  

Figure 2: Schematic view of a consistent mass spring         
system consisting of two mass points.  

 
 0 10 20 30 40 50 0 5 10 15 20 

Time (sec)                                                 Frequency (Hz) 
(a)                                                                      (b)  

Figure 3: Input ground motion for multi-span bridge structure: (a) in time domain; and (b) in frequency 
domain 
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Item  E / GPa  ρ / Kgm-3  ν  

Pier  24  2400  0.2  

Deck  200  2000  0.3  

 

Table 1: Material data of multi- span bridge 
structures (SC & CC). 
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mass points along the deck axis, considering target 
locations of response output from the models; see 
Figure 1. Third, CMSM parameters are computed 
from the dynamic mode shapes and the mass points’ 
location.  
  
4.2 Results and discussion  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Natural frequencies of the CMSMs in the transverse 
and longitudinal directions are presented in Tables 2 
and 3, respectively; the natural frequencies of the 
original solid element models are presented, too. As 
is seen, the natural frequencies of the CMSMs 
coincide with those of the solid element models.  
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Time series of displacement responses of the 
CMSM is compared with that of the original solid 
element model; see Figure 6 for case SC_1. It is 
seen that the response of the CMSM matches well 
with that of the solid element model. Relative errors 
of the maximum displacement in the longitudinal 
and transverse directions of the CMSM are 
presented in Tables 4(a) and 4(b), respectively. As 
is seen, the maximum relative error in all the cases 
is 2.852% 
 
 

 
Next, shear force values at the base of the fourth pier 
(P4) are estimated; see Figure 1 for the location of 
P4. The cross sectional shear force is computed as 
follows:  
 
 F���	�	∑	�����	�	�	∙	�����:	�������ds,  (6)  

where �	�	� corresponds to the base of the target 
pier, � is the unit normal on base, and the surface 
integration is made on the base. This computation is 
logical in the sense that the present CMSM is 
essentially the same as the modal analysis [5, 6, 17], 

Table 2: Natural frequencies along the transverse direction of multi-span bridge structure (CMSM 
and solid element model)  

Case ID  
Frequency / (Hz)  

Difference / (%)  
CMSM  Solid  

1st mode  2nd mode  1st mode  2nd mode  1st mode  2nd mode  
SC_1  1.625  2.610  1.624  2.610  0.062  0.000  
SC_2  1.752  2.703  1.752  2.702  0.000  0.037  
SC_3  2.191  3.882  2.190  3.881  0.046  0.026  
CC_1  1.541  2.152  1.540  2.151  0.065  0.046  
CC_2  1.692  2.254  1.692  2.253  0.000  0.044  
CC_3  1.894  3.131  1.893  3.130  0.053  0.032  

Table 3: Natural frequencies along the longitudinal direction of multi-span bridge structure (CMSM 
and solid element model)  

Case ID  
Frequency / (Hz)  

Difference / (%)  
CMSM  Solid (1st mode)  

SC_1  0.630  0.630  0.000  
SC_2  0.680  0.680  0.000  
SC_3  1.640  1.640  0.000  
CC_1  0.713  0.712  0.140  
CC_2  0.730  0.730  0.000  
CC_3  1.624  1.623  0.062  

 
 4 9 14 19 24 4 9 14 19 24 

 Time (s)   Time (s)   
 (a)  (b)  

Figure 6: The displacement results of SC_1 at M1 mass point location: (a) the CMSM for the 
longitudinal direction (z-direction); and (b) the CMSM for the transverse direction (x-direction).  
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and is able to compute local responses by using the 
approximate displacement, i.e., �	�	∑	���α.  
  
In Figure 7, � is presented for the longitudinal and 
transverse directions. Relative errors of the 
maximum resultant force are summarized in Tables 
5(a) and 5(b). As is seen, the maximum relative error 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 in all the cases is 3.524%, and it is clear that the 
CMSM can be used to approximately estimate 
structural seismic responses for certain class of 
ground motions which cause a target bridge structure 
to mainly excite in its first two modes.  
  
  
5. Conclusions  
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In this paper, we propose a consistent mass spring 
model (CMSM) for fundamental seismic response 
analysis of a bridge structure. While CMSM 
contains additional springs in comparison to 
conventional mass spring models, the CMSM shares 
fundamental dynamic characteristics and is able to 
yield structure seismic responses which agree well 
with those of original models (solid element model). 
Six different bridge structures are tested successfully 
in this study. In particular, the resultant force at a 
specific cross section can be estimated accurately for 
certain class of ground motions which cause a target 
bridge structure to mainly excite in its first two 
modes.  
  
There is a possibility of constructing a more accurate 
CMSM, by extending the number of mass points. 
Also, there is a possibility of extending a CMSM to 
non-linear structure. At least, it is straightforward to 
apply the meta-modeling to incremental responses 
of a non-linear elasto-plastic structure.  
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