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Abstract 

Coal mass has the potential to store substantial amounts of CO2 in the coal matrix and that CO2 has 

the ability to move through the coal seam pore and fracture systems, which influences the release of 

gases during coal mining and the CO2 sequestration process. In addition, the reduction of coal mass 

strength due to CO2 adsorption greatly affects the outburst process. The sudden and violent failure of 

coal seam with releasing large amount of gas is called outburst in coal mining. Up to date only few 

have been conducted to investigate the effect of CO2 adsorption induces strength reduction on the 

outburst process. The main objective of this study is to investigate the effect of CO2 injection on 

outburst in coal mining. Uniaxial Compressive Strength (UCS) experiments were therefore conducted 

on black coal samples, which have been saturated with CO2 and N2 at various pressures at 33 ºC. 

According to the results CO2 adsorption causes the UCS strength of coal to be reduced by up to 53 % 

and this higher strength reduction is due to the CO2 adsorption induce coal matrix swelling. However, 

N2 saturation causes the coal strength to be slightly increased. According to these observations, there 

is a high risk associated with CO2 sequestration process in coal seam as it significantly reduces the 

coal seam strength, which has direct influence on outburst process in coal. 
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1. Introduction 

Global warming is of utmost important challenge for 21
st 

century scientists and as a result, numerous 

greenhouse gas mitigation and global warming control programs have been initiated throughout the 

world during the last few decades. Basically four main techniques have been identified to minimize 

the atmospheric CO2 level, less carbon intensive fuels, more-energy-efficient methods, increased 

conservation, and carbon sequestration. 

After conducting many researches on these techniques, CO2 sequestration has been identified as the 

most economical and environmental attractive method. According to scientist’s pre-estimations, it is 

necessary to sequestrate trillion tons of CO2 by the end of this century to maintain a safe CO2 level in 

the atmosphere. Therefore, varies CO2 sequestration means are being tested 1) in depleted oil and gas 

reservoirs, 2) in saline aquifers, 3) in deep ocean beds, 4) in deep un-mineable coal beds and 5) as 

mineral carbonates. Compared with all the described CO2 sequestration methods, long term storage of 

CO2 in deep un-mineable coal seams has been identified as a safer, practical and economically 

attractive method. Because, adsorption is the main gas storing mechanism in coal and this causes the 

injected CO2 to be at more stable form in the coal seam. However, adsorption of the CO2 into coal 

matrix causes to induce a strain in-between the adsorbing gas layer and the coal matrix (coal matrix 

swelling), which causes the coal mass strength to be reduced (Perera et al., 2011a).  

Coal mass has a potential to store substantial amount of CO2 inside the coal matrix and 

that CO2 has ability to move through the coal seam pore and fracture systems, which influence the 

release of gases during coal mining and CO2 sequestration process, which is commonly known as 

outburst in coal mining. The strength reduction of coal mass due to CO2 adsorption highly affects this 

outburst process. There is a high risk associated with the coal CO2 sequestration process in the NSW 

coal seams as outburst in coal mining has been frequently occurred in some areas of coal seams 

(Lama and Saghafi, 2002; Lama and Bodzinoy, 1996). For instance, many CO2 outburst incidences 

occurred at Tahmoor, Metropolitan and West cliff collieries in Illawarra coalfield, basically due to 

the reasons of structural failure of the coal mass and accumulation of CO2 inside the coal seams. 

These outbursts caused to have about 11 deaths of mining workers. In the case of the Appin coal 

mine (samples location for this study) there were about 24 reported outbursts. Structure failure 

(presence of rock faults or dikes) of the coal seam caused to have many of them and 2-3 of them 

occurred due to the stress developed in the coal seam by the accumulated gases (Lama and Bodzinoy, 

1996). According to Lama (1995), the overall strength reduction of the coal mass by the CO2 

adsorption induced swelling process plays very important role in any kind of outburst in the Bulli 

coal seam. Although, many studies have been initiated to investigate the effect of the gas 

accumulation induced stress development and coal structural failure on the outburst process (Lama 

and Bodzinoy, 1996; Saghafi and Williams, 1998; Saghafi et al., 1995), up to date no much 

consideration has been given into the CO2 adsorption induced strength reduction effect, especially 

under super critical CO2 adsorption condition, which is the highly expectable condition of CO2 in 

deep coal seams. 

 

 



2. Experimental Procedure 

Bituminous type black coal samples used for the study were obtained from the Southern Sydney 

Basin. The coring machine, the diamond cutter and the rock grinding machine available in the Civil 

Engineering Department of Monash University were used to obtain the required standard size coal 

samples (38 mm diameter by 76 mm height) from the collected large coal block.  

 Then, at the next stage of the study samples were saturated under different conditions 

at 33 
o
C temperature to identify the CO2 (3, 4.5 and 6 MPa) and N2 (6 MPa) saturations effects on 

coal samples strength. Here, N2 saturated samples were used on the purpose of comparing the CO2 

saturation effect with a non-reactive gas saturating effect on black coal strength. The pressure cell 

available in the Ranjith and Perera (2011) was used to saturate the samples.   

Then, the effect of CO2 adsorption on coal mass strength was first investigated using the coal 

samples saturated at 3 to 6 MPa saturation pressure conditions. After the saturation in the pressure 

cell of the triaxial set-up an axial load was applied at 0.1 mm/min loading rate, until the sample fail. 

Therefore, basically the test was done as a uniaxial compressive stress (UCS). After finishing the first 

test, another sample was saturated under the same 4.5 MPa CO2 gas confinement at constant 33 
o
C 

temperature and UCS test was conducted similarly. The same procedure was followed to check the 

effect of CO2 adsorption on coal mass strength at the other saturation pressure condition (6 MPa). 

After completing the strength tests for CO2 saturations, another two samples were saturated 

from N2. In this case the saturating pressure was selected as the maximum saturating pressure used 

for the CO2 saturation (6 MPa) at 33 
o
C constant temperature.  

3. Results and Discussion 

Fig.1 shows how the CO2 saturation causes the coal strength to be reduced. According to the figure, 

CO2 saturation causes the UCS strength of black coal to be significantly reduced, where that 

reduction is up to 53% from the normal condition. Reduction of coal mass strength due to CO2 

adsorption is associated with the process of coal matrix swelling. The strain induce in-between the 

coal matrix and the adsorbing CO2 layer (swelling) during the adsorption process causes the coal 

mass strength to be reduced along these swelled areas. According to Fig.1, the UCS strength 

reduction due to CO2 adsorption reaches to a steady state after about 4.5 MPa saturation pressure 

condition, which implies that the 4.5 MPa saturation pressure at 33 
o
C temperature is enough to 

saturate the used 38 mm diameter by 76 mm black coal samples. 
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Figure 2. Stress-strain curves for normal and CO2 saturated coal samples. 

Fig.2 shows how the N2 saturation causes the coal strength to be reduced. According to the figure, N2 

saturation at any pressure does not cause either the sample UCS strength or the Young’s modulus to 

be noticeably changed, except the slight increment in UCS strength. It is well known fact that N2 is a 

non-reactive gas and therefore, it does not adsorb into the coal matrix, resulting in no any swelling 

effect due to N2 saturation. Therefore, this implies that the previous black coal strength reductions 

observed for the CO2 saturated samples were purely related with the chemical reactions occurred 

during the CO2 adsorption process. 
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 Figure 9. Stress-strain curves for normal and N2 saturated coal samples. 

At the end of this study, AE system available in the Civil Engineering Department of Monash 

University was used to identify the fracture propagation pattern of black coal under the different 

saturation conditions.  
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Figure 11. Variation of cummulative number of hits with axial stress for different saturation 

conditions 

According to the figure, N2 saturated sample and normal sample show almost similar fracture 

propagation patterns. This was expected as N2 saturation does not much affect black coal strength. 

However, N2 saturated samples show significant delays in crack initiation (29.2 MPa) and damage 

(32 MPa) compared to natural coal samples, where crack initiation is at around 26.2 MPa and damage 

is at around 30.3 MPa. According to Perera et al. (2011b), N2 has ability to reverse the CO2 

adsorption induced swelling areas for some extend, which should increase the strength of the coal 

sample. CO2 causes the coal strength to be reduced and therefore removal of these two should 

increase the sample strength. If the CO2 saturated sample is considered, it causes to have a quite short 

fracture propagation period (0.2 MPa) compared to normal black coal (11.2 MPa). This is due to the 

fact that CO2 saturated samples have already formed fractures during the saturation period as 

reaching of CO2 into the cleats and the associated swelling cause the cleats to be expand, resulting in 

fracture formation.  

4. Conclusions 

Based on the current study, the following conclusions were drawn, 

1. CO2 saturation causes the UCS strength of coal to be significantly reduced, where that 

reduction is up to 53% for black coal. This strength reduction is associated with the coal 

matrix swelling created by the adsorbing CO2 molecules. Therefore, the process of CO2 

injection into natural coal seams has high influence on outburst in coal mining. 

 

2. N2 saturation does not reduce coal mechanical properties (UCS strength and Young’s 

modulus), which implies that the coal strength reduction observed under CO2 saturation is 

purely related with the chemical reactions occurred during the CO2 adsorption process.   

 

3. However, N2 causes to have significant delays in crack initiation and damage compared to 

natural coal samples, which may due to the fact that natural coal has significant amount of in-

built CO2, which may has already slightly swelled the coal sample This swelled areas can be 

(c) CO2 Saturated at 6 MPa (a) Normal (b) N2 Saturated at 6 MPa 



reversed by N2 for some extend. Therefore, injection of N2 after the CO2 sequestration 

process has ability reduce the CO2 induced strength reduction for some extend. 
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