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Abstract   

Reliability analysis taking into account the uncertainties involved in a structural system plays an 

important role in the analysis and design of structures.  Due to the complexity of structural systems, the 

information about the functioning of various structural components has different sources and the failure 

of systems is usually governed by multiple failure criteria, all of which are to be taken into 

consideration for reliability estimation.  In this paper High Dimensional Model Representation 

(HDMR) based uncertain analysis method is presented for estimating the bounds on the reliability of 

structural systems involving multiple design points in the presence of mixed uncertain variables.  The 

method involves HDMR approximation of the limit state function, weight function to identify multiple 

design points, transformation technique to obtain the contribution of the fuzzy variables to the 

convolution integral, and fast Fourier transform techniques to evaluate the convolution integral for 

estimation of the membership function of reliability.  The proposed effort in evaluating the failure 

probability involves calculating conditional responses at a selected input determined by sample points.  

Three numerical examples have been presented, and comparisons have been made with direct MCS 

method to evaluate the accuracy and the computational efficiency of the present method. 

Keywords: Reliability analysis, Multiple design points, High Dimensional Model Representation, 

Random variables, Fuzzy variables, Convolution integral   



1. Introduction   

Reliability analysis taking into account the uncertainties involved in a structural system plays an 

important role in the analysis and design of structures.  Due to the complexity of structural systems the 

information about the functioning of various structural components has different sources and the failure 

of systems is usually governed by various uncertainties, all of which are to be taken into consideration 

for reliability estimation.  Uncertainties present in a structural system can be classified as aleatory 

uncertainty and epistemic uncertainty.  Aleatory uncertainty information can be obtained as a result of 

statistical experiments and has a probabilistic or random character.  Epistemic uncertainty information 

can be obtained by the estimation of the experts and in most cases has an interval or fuzzy character.  

When aleatory uncertainty is only present in a structural system, then the reliability estimation involves 

determination of the probability that a structural response exceeds a threshold limit, defined by a limit 

state/performance function influenced by several random parameters.  Structural reliability can be 

computed adopting probabilistic method involving the evaluation of multidimensional integral 

(Breitung, 1984; Rackwitz, 2001).  In first- or second-order reliability method (FORM/SORM), the 

limit state functions need to be specified explicitly.  Alternatively the simulation-based methods such as 

Monte Carlo techniques requires more computational effort for simulating the actual limit state function 

repeated times.  The response surface concept was adopted to get separable and closed form expression 

of the implicit limit state function in order to use fast Fourier transform (FFT) to estimate the failure 

probability (Sakamoto et al. 1997).  The High Dimensional Model Representation (HDMR) concepts 

were applied for the approximation of limit state function at the MPP and FFT technique to evaluate 

the convolution integral for estimation of failure probability (Rao and Chowdhury, 2008).  In this 

method, efforts are required in evaluating conditional responses at a selected input determined by 

sample points, as compared to full scale simulation methods.  

In addition, the main contribution to the reliability integral comes from the neighbourhood of 

design points.  When multiple design points exist, available optimization algorithms may converge to a 

local design point and thus erroneously neglect the main contribution to the value of the reliability 

integral from the global design point(s).  Moreover, even if a global design point is obtained, there are 

cases for which the contribution from other local or global design points may be significant (Au et al. 

1999).  In that case, multipoint FORM/SORM is required for improving the reliability analysis 

(Kiureghian and Dakessian, 1998).  In the presence of only epistemic uncertainty in a structural system, 

possibilistic approaches to evaluate the minimum and maximum values of the response are available 

(Briabant et al. 1999; Penmetsa and Grandhi, 2003).  All the reliability models discussed above are 

based on only one kind of uncertain information; either random variables or fuzzy input, but do not 

accommodate a combination of both types of variables.  However, in reality, for some engineering 

problems in which some uncertain parameters are random variables, others are interval or fuzzy 

variables, using one kind of reliability model cannot obtain the best results.  To determine the bounds of 

reliability of a structural system involving both random and interval or fuzzy variables, every 

configuration of the interval variables needs to be explored.  Hence, the computational effort involved 

in estimating the bounds of the failure probability increases tremendously in the presence of multiple 

design points and mixed uncertain variables.   



This paper explores the potential of coupled Multicut-HDMR (MHDMR)-FFT technique in 

evaluating the reliability of a structural system with multiple design points, for which some 

uncertainties can be quantified using fuzzy membership functions while some are random in nature.  

Comparisons of numerical results have been made with direct MCS method to evaluate the accuracy 

and computational efficiency of the present method.    

2. High Dimensional Model Representation   

High Dimensional Model Representation (HDMR) is a general set of quantitative model assessment 

and analysis tools for capturing the high-dimensional relationships between sets of input and output 

model variables (Rabitz and Alis, 1999; Rao and Chowdhury, 2008).  Let the N dimensional vector 

1 2{ , , , }  Nx x xx  represent the input variables of the model under consideration, and the response 

function as ( )g x .  Since the influence of the input variables on the response function can be 

independent and/or cooperative, HDMR expresses the response ( )g x  as a hierarchical correlated 

function expansion in terms of the input variables as 
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where 0g  is a constant term representing the zeroth-order component function or the mean response of 

( )g x .  The function  i ig x  is a first-order term expressing the effect of variable ix  acting alone, 

although generally nonlinearly, upon the output ( )g x .  The function  
1 2 1 2

,i i i ig x x  is a second-order 

term which describes the cooperative effects of the variables 
1i

x  and 
2i

x  upon the output ( )g x .  The 

higher order terms give the cooperative effects of increasing numbers of input variables acting together 

to influence the output ( )g x .  The last term  12, , 1 2, , , N Ng x x x  contains any residual dependence of 

all the input variables locked together in a cooperative way to influence the output ( )g x .  The 

expansion functions are determined by evaluating the input-output responses of the system relative to 

the defined reference point c  along associated lines, surfaces, subvolumes, etc. in the input variable 

space.  This process reduces to the following relationship for the component functions in Eq. (1),  

  0 g g c , (2) 

     0, i

i i ig x g x gc , (3) 

        1 2
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where the notation    1 2 1 1, , , , , , , ,   i

i i i i Ng x g c c c x c cc  denotes that all the input variables are at 

their reference point values except ix .  The 0g  term is the output response of the system evaluated at 

the reference point c .  The higher order terms are evaluated as cuts in the input variable space through 

the reference point.  Therefore, each first-order term  i ig x  is evaluated along its variable axis through 

the reference point.  Each second-order term  
1 2 1 2

,i i i ig x x  is evaluated in a plane defined by the binary 



set of input variables 
1i

x  and 
2i

x  through the reference point, etc.  The first-order approximation of 

( )g x  is as follows:  
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The notion of 0th, 1st, etc. in HDMR expansion should not be confused with the terminology used 

either in the Taylor series or in the conventional least-squares based regression model.  It can be shown 

that, the first order component function  i ig x  is the sum of all the Taylor series terms which contain 

and only contain variable ix .  Hence first-order HDMR approximations should not be viewed as first-

order Taylor series expansions nor do they limit the nonlinearity of ( )g x .   

3. Multicut-HDMR   

The main limitation of truncated cut-HDMR expansion is that depending on the order chosen 

sometimes it is unable to accurately approximate ( )g x , when multiple design points exist on the limit 

state function or when the problem domain is large.  In this section, a new technique based on 

MHDMR is presented for approximation of the original implicit limit state function, when multiple 

design points exist.  The basic principles of cut-HDMR may be extended to more general cases.  

MHDMR is one extension where several cut-HDMR expansions at different reference points are 

constructed, and the original implicit limit state function ( )g x  is approximately represented not by one, 

but by all cut-HDMR expansions.  In the present work, weight function is adopted for identification of 

multiple reference points closer to the limit surface.   

Let 1 2, , , dmd d d  be the dm  identified reference points closer to the limit state function based on 

the weight function.  MHDMR approximation of the original implicit limit state function is based on 

the principles of cut-HDMR expansion, where individual cut-HDMR expansions are constructed at 

different reference points 1 2, , , dmd d d  by taking one at a time as follows:   
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The original implicit limit state function ( )g x  is approximately represented by blending all locally 

constructed dm  individual cut-HDMR expansions as follows: 
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The coefficients  k x  possess the properties: 

  
1 if  is in any cut subvolume of the -th reference point expansions
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And 
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There are a variety of choices to define  k x .  In the present study, the metric distance  k x  from 

any sample point to the reference point ;  1,2, ,k

dk m d  
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is used to define 
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Where 

  
1; 

( )
dm

k s

s s k 

  x x . (12) 

The coefficients  k x  determine the contribution of each locally approximated function to the global 

function.   The properties of the coefficients  k x  imply that the contribution of all other cut-HDMR 

expansions vanish except one when x is located on any cut line, plane, or higher dimensional ( l) sub-

volumes through that reference point, and then the MHDMR expansion reduces to single point cut-

HDMR expansion.  As mentioned above, the l-th order cut-HDMR approximation does not have error 

when x is located on these sub-volumes.  When dm  cut-HDMR expansions are used to construct a 

MHDMR expansion, the error free region in input x space is dm  times that for a single reference point 

cut-HDMR expansion, hence the accuracy will be improved.  Therefore, first-order MHDMR 

approximations of the original implicit limit state function with dm  reference points can be expressed 

as  
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3.1 Weight Function for Identification of Multiple Reference Points  

The most important part of MHDMR approximation of the original implicit limit state function 

is identification of multiple reference points closer to the limit state function.  The proposed weight 

function is similar to that used by Kaymaz and McMahon (2005) for weighted regression analysis.  

Among the limit state function responses at all sample points, the most likelihood point is selected 

based on closeness to zero value, which indicates that particular sample point is close to the limit state 

function.  In this study two types of procedures are adopted for identification of reference points closer 

to the limit state function, namely: (1) first-order method, and (2) second-order method.  The procedure 

for identification of reference points closer to the limit state function using first-order method proceeds 

as follows: (a)   3,5,7 or 9n   equally spaced sample points  1 2i in    ,  3 2i in    , …, 

i , …,  3 2i in    ,  1 2i in     are deployed along each of the random variable axis ix  

with mean i  and standard deviation i , through an initial reference point.    Initial reference point is 

taken as mean value of the random variables;  (b) The limit state function is evaluated at each sample 



point; (c) Using the limit state function responses at all sample points, the weight corresponding to each 

sample point is evaluated using the following weight function,  
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Second-order method of identification of reference points closer to the limit state function, 

proceeds as follows: (a) A regular grid is formed by taking   3,5,7 or 9n   equally spaced sample 

points  
1 1

1 2i in    ,  
1 1

3 2i in    , …, 
1i

 , …,  
1 1

3 2i in    ,  
1 1

1 2i in     along 

the random variable 
1i

x  axis with mean 
1i

  and standard deviation 
1i

 , and   3,5,7 or 9n   equally 

spaced sample points  
2 2

1 2i in    ,  
2 2

3 2i in    , …, 
2i

 , …,  
2 2

3 2i in    , 

 
2 2

1 2i in     along the random variable 
2i

x  axis with mean 
2i

  and standard deviation 
2i

 , 

through an initial reference point.  Initial reference point is taken as mean value of the random 

variables;  (b) The limit state function is evaluated at each sample point; (c) Using the limit state 

function responses at all sample points, the weight corresponding to each sample point is evaluated 

using the following weight function, 
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Sample points 1 2, , , dmd d d  with maximum weight are selected as reference points closer to the limit 

state function, for construction of dm  individual cut-HDMR approximations of the original implicit 

limit state function locally.  In this study, two types of sampling schemes, namely FF and SF are 

adopted.  Fig. 1(a) shows FF sampling scheme involving first-order method of identification of 

reference points and blending of locally constructed individual first-order HDMR approximations at 

different identified reference points using the coefficients  k x  to form MHDMR 

approximation  g x .  Fig. 1(b) shows SF sampling scheme involving second-order method of 

identification of reference points and blending of locally constructed individual first-order HDMR 

approximations to form MHDMR approximation.    

 

 

 

 

 

 

 

 

 

 

Figure 1: MHDMR approximation of original limit state function; with (a) FF sampling scheme; and 

(b) SF sampling scheme 
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4. Estimation of Failure Probability in Presence of Mixed 
Uncertain Variables  

Let the N dimensional input variables vector 
1 2{ , , , }  Nx x xx , which comprises of r  number of 

random variables and f  number of fuzzy variables be divided as, 1 2 1 2{ , , , , , , , }    r r r r fx x x x x xx  

where the sub vectors 
1 2{ , , , } rx x x  and 1 2{ , , , }  r r r fx x x  respectively group the random variables 

and the fuzzy variables, with  N r f .  Then the first-order approximation of ( )g x  can be divided 

into three parts, the first part with only the random variables, the second part with only the fuzzy 

variables and the third part is a constant which is the output response of the system evaluated at the 

reference point c , as follows   

          
1 1

, , 1
  

    
r N

i i

i i

i i r

g g x g x N gx c c c . (16) 

The joint membership function of the fuzzy variables part is obtained using suitable transformation of 

the variables 1 2{ , , , }  r r Nx x x  and interval arithmetic algorithm.  Using this approach, the minimum 

and maximum values of the fuzzy variables part are obtained at each  -cut.  Using the bounds of the 

fuzzy variables part at each  -cut along with the constant part and the random variables part in Eq. 

(16), the joint density functions are obtained by performing the convolution using FFT in the rotated 

Gaussian space at the MPP, which upon integration yields the bounds of the failure probability. 

4.1 Transformation of Fuzzy Variables 

Optimization techniques are required to obtain the minimum and maximum values of a nonlinear 

response within the bounds of the interval variables.  This procedure is computationally expensive for 

problems with implicit limit state functions, as optimization requires the function value and gradient 

information at several points in the iterative process.  But, if the function is expressed as a linear 

combination of interval variables, then the bounds of the response can be expressed as the summation 

of the bounds of the individual variables.  Therefore, fuzzy variables part of the nonlinear limit state 

function in Eq. (16) is expressed as a linear combination of intervening variables by the use of first-

order HDMR approximation in order to apply an interval arithmetic algorithm, as follows  

   1 2

1

,
 

    
N

i

i f

i r

g x z z zc , (17) 

Where  


   i i i iz x  is the relation between the intervening and the original variables with   being 

order of approximation taking values 1   for linear approximation, 2   for quadratic 

approximation, 3   for cubic approximation, and so no.  The bounds of the intervening variables can 

be determined using transformations (Adduri and Penmetsa, 2008).  If the membership functions of the 

intervening variables are available, then at each  -cut, interval arithmetic techniques can be used to 

estimate the response bounds at that level.     



4.2 Estimation of Failure Probability using FFT  

Concept of FFT can be applied to the problem if the limit state function is in the form of a linear 

combination of independent variables and when either the marginal density or the characteristic 

function of each basic random variable is known.  In the present study HDMR concepts are used to 

express the random variables part along with the values of the constant part and the fuzzy variables 

part at each  -cut as a linear combination of lower order component functions.  The steps involved in 

the proposed method for failure probability estimation as follows: 

(i) If 
1 2{ , , , }  T r

ru u uu  is the standard Gaussian variable, let  * * * *

1 2, , ,
T

k k k k

ru u u u  be the 

MPP or design point, determined by a standard nonlinear constrained optimization.  The MPP 

has a distanceHL , which is commonly referred to as the Hasofer–Lind reliability index.  

Construct an orthogonal matrix r r
R  whose rth column is * *k k

HL α u , i.e., 

*

1

k   R R α  where 1

1

 r r
R  satisfies * 1 1

1 0k T r  α R .  The matrix R can be obtained, for 

example, by Gram–Schmidt orthogonalization.  For an orthogonal transformation u = Rv .  Let 

1 2{ , , , }  T r

rv v vv  be the rotated Gaussian space with the associated 

MPP  * * * *

1 2, , ,
T

k k k k

rv v v v .  Note that in the rotated Gaussian space the MPP 

is * {0,0, , }  T

HLv .  The transformed limit state function ( )g v  therefore maps the random 

variables 
 
along with the values of the constant part and the fuzzy variables part at each  -cut, 

into rotated Gaussian space v .  First-order HDMR approximation of ( )g v  in rotated Gaussian 

space v  with  * * * *

1 2, , ,
T

k k k k

rv v v v  as reference point  can be represented as follows: 

          * * * * *

1 2 1 1 1

1

, , , , , , , , , 1
r

k k k k k k k k

r i i i r

i

g g v v v g v v v v v r g 



      v v . (18) 

(ii) In addition to the MPP as the chosen reference point, the accuracy of first-order HDMR 

approximation in Eq. (18) may depend on the orientation of the first 1r  axes.  In the present 

work, the orientation is defined by the matrix R .  In Eq. (18), the terms 

 * * * *

1 1 1, , , , , ,k k k k k

i i i rg v v v v v    are the individual component functions and are independent of 

each other.  Eq. (18) can be rewritten as,  

    *

1

,
i

r
k k k k

i

i

g a g v


  v v , (19) 

Where    *1k ka r g   v . 

(iii) New intermediate variables are defined as 

  *,
ik k k

i iy g v v . (20) 

The purpose of these new variables is to transform the approximate function into the following 

form  

   1 2

k k k k k

rg a y y y     v . (21) 



(iv) Due to rotational transformation in v-space, component functions k

iy  in Eq. (21) are expected to 

be linear or weakly nonlinear function of random variables
iv .  In this work both linear and 

quadratic approximations of k

iy  are considered.  Let k

i i i iy b c v   and 2k

i i i i i iy b c v e v    be 

the linear and quadratic approximations, where coefficients ib , ic  and ie  (non-

zero) are obtained by least-squares approximation from exact or numerically simulated 

conditional responses       1 * 2 * *, , , , , ,
i i i

T
k k k k k n k

i i ig v g v g vv v v  at n sample points along the 

variable axis vi.  Then Eq. (21) results in  

    1 2

1

r
k k k k k k

r i i i

i

g a y y y a b c v


        v , (22) 

and 

    2

1 2

1

r
k k k k k k

r i i i i i

i

g a y y y a b c v e v


         v . (23) 

(v) The global approximation is formed by blending of locally constructed individual first-order 

HDMR approximations in the rotated Gaussian space at different identified reference points 

using the coefficients k .  

 
1

( ) ( )
dm

k

k

k

g g


  v v . (24) 

(vi) Since iv  follows standard Gaussian distribution, marginal density of the intermediate variables 

iy  can be easily obtained by simple transformation (using chain rule).   

    
i i

i
Y i V i

i

dv
p y p v

dy
 . (25) 

(vii) Now the approximation is a linear combination of the intermediate variables iy .  Therefore, the 

joint density of  g v , which is the convolution of the individual marginal density of the 

intervening variables iy , can be expressed as follows:  

        
1 21 2     

rY Y Y rG
p g p y p y p y , (26) 

where   
G

p g  represents joint density of the transformed limit state function  g v . 

(viii) Applying FFT on both sides of Eq. (26), leads to 

        
1 21 2

                
rY Y Y rG

FFT p g FFT p y FFT p y FFT p y . (27) 

(ix) By applying inverse FFT on both side of Eq. (27), joint density of ( )g v  is obtained. 

(x) The probability of failure is given by the following equation 

  
0

F G
P p g dg



     . (28) 

(xi) The membership function of failure probability can be obtained by repeating the above procedure 

at all confidence levels of the fuzzy variables part. 



5. Numerical Examples   

5.1 Four Dimensional Quadratic Function 

This example considers a hypothetical limit state function of the following form: 

 2 2 2 2 2 2

1 2 3 4 1 2 3 4 5 5 6 6( ) 9 11 11 11 4.6 4.7 11g x x x x x x x x x x x x             x , (29) 

where 
1 2 3 4, , ,x x x x  are assumed to be normal variables with mean value as 5.0 and standard deviation 

value as 0.4, and 5 6,x x  are assumed to be fuzzy variables with triangular membership function having 

the triplet [4.96, 5.0, 5.04].  The proposed method in conjunction with FF sampling scheme is studied 

by taking 7n  .  By taking 5 6,x x  values taken to be their respective nominal values corresponding to 

1  , using FF sampling scheme, the sample points  1 5.0, 3.8, 5.0, 5.0d ,  2 5.0, 5.0, 3.8, 5.0d , 

and  3 5.0, 5.0, 5.0, 3.8d   are identified as reference points closer to the limit state function 

producing maximum weight.  Fig. (2) shows the estimated membership function of the failure 

probability FP   by the proposed methods, as well as by using direct MCS.  The failure probability 

estimated by the proposed MHDMR approximation with FF sampling scheme requires significantly 

less computational effort than direct MCS for the same accuracy.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Membership function of failure probability for four dimensional quadratic function 

5.2 80-bar 3D-truss Structure 

A 3D-truss, shown in Fig. 3(a), is considered in this example to examine the accuracy and efficiency of 

the proposed method for the membership function of failure probability estimation.  The loads at 

various levels are considered to be random while the cross-sectional areas of the angle sections at 

various levels are assumed to be fuzzy.  The maximum horizontal displacement at the top of the tower 

is considered to be the failure criterion, as given below. 

    limg   x x , (30) 

The limiting deflection lim  is assumed to be 0.15 m.  The limit state function is approximated 

using first-order HDMR by deploying 5n   sample points along each of the variable axis and taking 

respectively the mean values and nominal values of the random and fuzzy variables as initial reference 



point.  The approximated limit state function is divided into two parts, one with only the random 

variables along with the value of the constant part, and the other with the fuzzy variables.  The joint 

membership function of the fuzzy part of approximated limit state function is obtained using suitable 

transformation of the fuzzy variables.  The two reference points closer to the function producing 

maximum weights, 1.0 and 0.977 are identified.  After identification of two reference points, local first-

order HDMR approximations are constructed at the reference points.  The bounds of the failure 

probability are obtained both by performing the convolution using FFT in conjunction with linear and 

quadratic approximations and MCS on the global approximation.  Fig. 3(b) shows the membership 

function of the failure probability 
FP  estimated both by performing the convolution using FFT, and 

MCS on the global approximation, as well as that obtained using direct MCS.  In addition, effects of 

SF sampling scheme and the number of sample points on the estimated membership function of the 

failure probability FP  are studied.  Fig. 3(b) also shows the membership function of the failure 

probability FP  estimate obtained by the proposed method based on SF sampling scheme. 

 

   

 

 

 

 

 

Figure 3: (a) 80-bar 3D-truss structure; (b) Membership function of failure probability  

6. Summary and Conclusions   

This paper presented a novel uncertain analysis method for estimating the membership function of the 

reliability of structural systems involving multiple design points in the presence of mixed uncertain 

variables.  The method involves MHDMR technique for the limit state function approximation, 

transformation technique to obtain the contribution of the fuzzy variables to the convolution integral 

and fast Fourier transform for solving the convolution integral at all confidence levels of the fuzzy 

variables.  Weight function is adopted for identification of multiple reference points closer to the limit 

surface.  Using the bounds of the fuzzy variables part at each confidence level along with the constant 

part and the random variables part, the joint density functions are obtained by (i) identifying the 

reference points closer to the limit state function and (ii) blending of locally constructed individual first-

order HDMR approximations in the rotated Gaussian space at different identified reference points to 

form global approximation, and (iii) performing the convolution using FFT, which upon integration 



yields the bounds of the failure probability.  As an alternative the bounds of the failure probability are 

estimated by performing MCS on the global approximation in the original space, obtained by blending 

of locally constructed individual first-order HDMR approximations of the original limit state function 

at different identified reference points.   

The results of the numerical examples involving explicit hypothetical mathematical function 

and structural/solid-mechanics problems indicate that the proposed method provides accurate and 

computationally efficient estimates of the membership function of the failure probability.  The results 

obtained from the proposed method are compared with those obtained by direct MCS.  The numerical 

results show that the present method is efficient for structural reliability estimation involving any 

number of fuzzy and random variables with any kind of distribution.  Two types of sampling schemes, 

namely FF, and SF, are adopted in this study for MHDMR approximation of the original limit state 

function construction.  A parametric study is conducted with respect to the number of sample points n  

used in FF and SF sampling based MHDMR approximation and its effect on the estimated failure 

probability is investigated.  An optimum number of sample points n  must be chosen in approximation 

of the original limit state function.   
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