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Abstract: A hyperbolic shear deformation theory for thick isotropic beams is developed 

where the displacements are defined using a meaningful function which is more physical 

and directly comparable with other higher order theories. Governing variationally 

consistent equilibrium equations and boundary conditions are derived in terms of the stress 

resultants and displacements using the principle of virtual work. This theory satisfies shear 

stress free boundary condition at top and bottom of the beam and doesn’t need shear 

correction factor. Results obtained for stresses and displacements using the present theory 

for static flexure of simply supported uniform isotropic beam carrying uniformly 

distributed load are compared with other beam theories and the exact elasticity solution. 
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1. Introduction 

Several beam theories are used to represent 
the kinematics of deformation. Among 
those Euler beam theory (EBT) is earliest 
and one of the well - known theory which 
has a major drawback of neglecting effects 
of transverse shear strain because of the 
assumption the plane section that is 
perpendicular to neutral axis of beam before 
bending, remains plane and perpendicular 
to axis after the deformation. This theory 
provides excellent solution for the analysis 
of slender beams whereas for moderately 
short or thick beams, the solutions are not in 
the acceptable range. 

2. Literature Review 

In the development of beam theories, 
Timoshenko [15] was the first to include the 

strain andshearinfluence of transverse
the newlyintoeffectinertiarotatory

shear deformationorderdeveloped first
Ti(FSDT). In thetheory beammoshenko

theory, it is assumed that cross section 
remains plane but not normal to the neutral 
axis after deformation. Since Timoshenko 
beam theory assumes a constant transverse 
shear stress distribution through the beam 
depth, it is necessary to have shear 

correction factor for the beam. Cowper [2,3] 
analysed the accuracy of Timoshenko beam 
theory for transverse vibration of simply 
supported beam with respect to 
fundamental frequency and reported some 
values for shear correction factor of beams 
having various cross section. 

The limitations on the Euler beam theory 
and the Timoshenko theory have led to the 
development of higher order theory. Many 
higher order theories are available in 
literatures for static and dynamic analysis of 
the beams. Levinson [7] developed new 
rectangular beam theory for static and 
dynamic analysis of the beam where he 
derived governing equations for beam using 

the[1] usedBickfordvector mechanics.
used by thesame displacement function
variationallyderived aandLevinson

consistent shear deformation theory for 
isotropic beams. Third order plate theory 
developed by Reddy [9] was specialized 
into beam theory (HSBT) by Heyliger and 
Reddy [6] to study the linear and non-linear 
bending and vibration of isotropic beams. 
These parabolic shear deformation theories 

correctionsheartheforneedobviate the
boundaryfreestressshearsincefactor
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condition in top and bottom of the beam are 
satisfied. 

There is another set of refined shear 
deformation theories using trigonometric 
and hyperbolic profiles to define the 
displacement function. Touratier [17] 
presented a trigonometric shear 
deformation theory. However, this theory 
does not satisfy shear stress free boundary 
condition. Ghugal and Shimpi [5] 
developed variationaly consistent 
trigonometric shear deformation theory 
(TSDBT) which satisfies the shear stress free 
function condition at top and bottom 
surfaces of the beam. Soldatos [14] 
developed hyperbolic shear deformation 
theory for homogeneous monoclinic plates. 
Ghugal and Sharma [4] and Sayyad and 
Ghugal [12] developed a variationally 
consistent refined hyperbolic shear 
deformation theory (HPSBT) for flexure and 
free vibration of thick isotropic beam. 
Although this theory satisfies shear free 
conditions at top and bottom of the beam 
and doesn’t need shear correction factor, 
there is an inconsistency in the relationship 
for displacement function hence strains, 
compare to other higher order theories 
which have been used in unified higher 
order theory by Simsek and Reddy [13]. 
Recently, Pankade, Tupe and Salve [8] have 
developed a hyperbolic shear deformation 
theory with the displacement function 
defined using third order variable and 
hyperbolic function to analyse the isotropic 
beam. 

In the present study, the displacement 
function used in the hyperbolic shear 
deformation theory [4] is modified such that 
the functions used to define the 
displacements are more physical and 
directly comparable to other higher order 
theories. Governing variationally consistent 
equilibrium equations for uniform isotropic 
beam are derived in terms of stress 
resultants and associated force and 
kinematic boundary conditions are defined 
in terms of stress resultants and 
displacements respectively. Solutions for 
the bending problem of uniform isotropic 
rectangular beam are derived and 

associated constants are defined and 
solutions are validated using an illustrative 
problem. 

In the originally developed hyperbolic shear 
deformation theory by Ghugal and Sharma 
[4], the displacement field is assumed as 

u(x,z) = -z dw/dx  + [ z cosh(1/2) – h 
sinh(z/h)]θ(x) 

w(x,z) = w(x) 

At the later work of Sayyad and Ghugal, 
[12] the displacement u(x,z) is given in 
following form 

u(x,z) = -z dw/dx  + 

 [ z cosh(1/2) – h sinh(z/h)][  dw/dx + 
ф(x)] 

Here u and w are the axial and transverse 
displacements of the beam center line in the 
x and z directions, respectively. θ(x) and 
ф(x) are two unknown functions which 
represent shear rotation and total rotation of 
cross section at neutral axis respectively. But 
these functions θ(x) and ф(x) are not equal 
to shear rotation and total rotation of cross 
section at neutral axis respectively. 

3.Theoretical Formulation of Proposed 

Modified Beam Theory 

Consider a uniform isotropic thick beam as 
shown in Fig.1, in which the deformed 
beam cross section neither stays normal to 
the deformed centroidal axis nor remains a 
plane. By using the Cartesian coordinate 
system (x; y; z) indicated in Fig.1 where the 
x-axis is coincident with the centroidal axis 
of the undeformed beam, the y-axis is the 
neutral axis, and the z-axis is along the 
thickness of the beam. The beam is 
subjected to transverse load of intensity q(x) 
per unit length of the beam. 

3.1 Assumptions Made in the Theoretical 
Formulation 

 The in-plane displacement u in x 
direction consists of two parts: 

a. Displacement due to the bending 
rotation 
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 b. Displacement due to shear rotation 
which is assumed to be hyperbolic in 

nature with respect thickness coordinate 

Fig 1: Beam under consideration

 The transverse displacement w in z 
direction is assumed to be a function 
of x 

 One-dimensional constitutive law is 
used.  

 The beam is subjected to lateral load 
only 

3.2 The Displacement Field 

Based on the above mentioned assumptions 
displacement field of the present theory is 
given as 

u(x,z)= z ф(x) -  

μ( h sinh(z/h)- z)[  dw/dx + ф(x)]    (1) 

; μ= 1/(cosh(1/2)  -1)       

w(x,z) = w(x)           (2) 

where u(x,z) is axial displacement at  any  

point on the line parallel to beam centroidal 
axis and also w(x) and ф(x) are two  
unknown functions named the transverse 
displacement and total rotation of the cross 
section at neutral axis respectively. 

θ(x)= [  dw/dx + ф(x)] ; ф(x) is rotation of 
cross section due to shear at neutral axis. 

The normal strain and transverse strain are 
obtained using linear theory of elasticity. 

εxx =   ∂u/∂x  = z  (dф(x))/dx– 

μ( h sinh(z/h)-z)[  dw/dx + ф(x)]    (3) 

γxz  =  ∂u/∂z  +  ∂w/∂x    

=  [ 1 – μ(cosh(z/h)-1)][  dw/dx + ф(x)]  (4) 

One-dimensional law is used to obtained 
normal bending and transverse shear 
stresses. 

σxx  = Exx εxx             (5) 

τxz = Gxz γxz              (6) 

3.3 Governing Equations and Boundary 
Conditions 

Using above stress and strain relations in 
Eqns (3)-(6), virtual strain energy δU 
becomes 

     (7) 

and the virtual potential energy of the 
transverse load q is given by 

         (8) 

Applying the theorem of minimum 
potential energy δπ = δU + δV = 0, it 
becomes 

[σxx δєxx+ τxzδ γxz]   - 

  = 0          (9) 

By substituting stress resultants and 
applying integration by parts, we obtain the 
coupled Euler–Lagrange equations which 
are the governing differential equations of 
equilibrium and associated boundary 
conditions of the beam. 

Equation of Equilibrium 

 = -            (10) 
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  - (  - ) = 0      (11) 

Boundary condition 

 = 0  or     is prescribed    (12) 

 = 0  or     is prescribed    (13) 

 = 0 or    is prescribed    (14) 

Here the stress resultants are defined as 
follows 

        (15) 

          (16) 

   (17) 

     (18) 

     (19) 

         (20) 

Where Mxx and Qx are the usual bending 
moment and shear force and M’xx and Rx are 
the higher order stress resultant. Vx  is the 
effective shear force. 

For a uniform rectangular isotropic beam, 
the equations of equilibrium can be 
obtained in terms of the displacements w 
and ф using the stress resultant-
displacement relations given in Eqns (18)-
(21).  

    (21) 

 

               (22) 

Where 

A0 = μ{ cosh  - 12[cosh  – 2sinh ]} 

B0 = { (cosh( )2 - 24 cosh  [cosh  – 2sinh ] 

+6 [sinh1 -1]} 

C0 = {  [cosh  - 2sinh ] – [sinh(1) -1] } 

3.5 The General Solutions for Static Flexure of 
Beams 

By solving the Eqns (21) and (22), we can 
obtain the general solutions for w and ф 

θ = C2 coshλx + C3 sinhλx +          (23) 

 

 

              (24) 

 

 

        (25) 

Where  

k=    m = B0/A0 – A0 and λ = k/m 

4. Illustrative Example  

A simply supported beam with rectangular 
cross section (b× h) is subjected to uniformly 
distributed load q over the span L at surface  

z = −h/2 acting in the downward z 
direction. The origin of beam is taken at left 
end support i.e. at x = 0. The material 
properties for beam used are:  E = 30 GPa, υ 
= 0.2 and  ρ = 2400 kg/m3, where E  is the 
Young’s modulus, ρ is the density, and υ  is 
the Poisson’s ratio of beam material. The 
boundary conditions associated with simply 
supported beam as follows: 

= =  = 0 at x= 0 and x=L      

= = 0 →  =  = 0 at x=0 and x=L 

From the general solutions of the beam, 

expression for  and ф as follows: 

 

 

  

  (27) 

Results are obtained using present theory, 
other beam theories and exact elasticity 
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solutions given in [16] for axial 
displacement, transverse displacement, 
axial stress and transverse stress for two 
different aspect ratios (S=4 and S=10) of the 
beam in following non dimensional forms 
and presented in tables 1-10 and in Fig 2-11 
in graphical form. 

            

      

5. Discussion 

The results obtained using present theory 
for bending of simply supported isotropic 
beam are compared with EBT, FSBT, HSBT, 
HPSBT and exact elasticity solutions given 
in [16]. Here the displacements values are 
obtained using the expressions derived for 
displacements and stress values are 
obtained using the constitutive relations. 

It is observed that present modification to 
HPSBT doesn’t affect the accuracy of the 
results and gives exact values as obtained 
using HPSBT except for the function which 
represents shear rotation at neutral axis. 
Results obtained using modified theory 
almost equal to the values obtained using 
HSBT. Although present theory 
overestimates transverse displacement and 
axial stress compare to exact solution, it is 
only 0.8% and 0.3% for maximum 
transverse deflection and axial stress 
respectively when the aspect ratio is equal 
to 4. Present theory underestimates the 
maximum shear stress by 3% and 1.4% for 
aspect ratio 4 and 10 respectively compare 
to the exact solution. 

Present theory is consistent with the other 
higher order theories which have been 
included in the unified beam theory with 
respect to functions that represent the shear 
rotation and total rotation at neutral axis. 
This modification to HPSBT has made the 
theory more comparable to other higher 
order theories and it is easier to establish 
stress resultants and displacement 
relationships as presented in [10]. Also, the 
function that is equal to shear rotation at 
neutral axis in this theory can be replaced in 

terms of a function that is equal to total 
rotation of the cross section whereas in 
HPSBT when the function that represent the 
shear rotation at neutral axis is replaced 
with function that represent the total 
rotation of the cross section, we can’t 
directly get the value for rotation of cross 
section. It is required to do certain 
adjustments to get the values for rotation of 
cross section using HPSBT. This 
modification would make some tasks much 
easier like establishing the exact relationship 
between other beam theories as presented in 
[10]. Also, this displacement function will be 
useful in formulating the unified beam 
element as presented in [11]. 

Table1. Non dimensional maximum transverse 
displacement( ),axial stress( ), total rotation 
of cross section( ) and transverse shear stress    
( ) for aspect ratio, S= 4 

Model 
    

EBT 1.5625 12.0000 13.3344 - 

FSBT 1.7875 12.0000 13.3444 2.4000 

Present 1.7872 12.2387 12.7590 2.9111 

HPSBT 1.7872 12.2387 -* 2.9111 

HSBT 1.7872 12.2351 12.7504 2.9198 

Exact 1.7735 12.2000 12.5846 3.0000 

*  is equal to -7.1414 

Table2. Non dimensional maximum transverse 
displacement( ),axial stress( ), total rotation 
of cross section( ) and transverse shear stress    
( ) for aspect ratio, S= 10 

Model 
    

EBT 1.5625 75.0000 208.3500 - 

FSBT 1.5985 75.0000 208.3500 6.0000 

Present 1.5984 75.2387 206.8882 7.3973 

HPSBT 1.5984 75.2387 -* 7.3973 

HSBT 1.5984 75.2351 206.8665 7.4198 
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Exact 1.5960 75.2000 206.4753 7.5000 

*  is equal to 156.3421 

 

 

 

 

 

 

 

 

 

Fig 2. Variations of transverse deflection along 
the beam(S=4) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3. Variations of transverse deflection along 
the beam(S=4) 

Fig 5. Variations of axial stress along the 

 beam at z=0 (S=10)  

 

Fig 7. Variation of axial stress across the 
 depth at L= 0 (S=10) 
 

Fig 4. Variations of axial stress 

along the beam at z=0 (S=4) 

 

Fig 6. Variation of axial stress across the 
depth at L= 0 (S=4) 
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Fig 8. Variation of shear rotation along the                 
beam at z=0 (S=4) 

 

 

6. Conclusion 

A modified HPSBT has been presented in 
this paper which has the following features. 

Although the displacement field is 
modified, this theory satisfies zero 
transverse shear stress boundary conditions 
on top and bottom surfaces of the beam 
hence it doesn’t need shear correction factor. 

The number of unknown variables is same 
as that of HPSBT. 

The axial stress and transverse shear stress 
can be obtained using the constitutive 
relations. 

 

Fig 9. Variation of shear rotation along the                 
beam at z=0 (S=10) 

 

Fig 11. Variation of shear Stress across the 
depth of beam at L= 0 (S=10) 

The axial stress and transverse shear stress 
can be obtained using the constitutive 
relations. 

This modified theory gives exactly same 
values as HPSBT for axial stress, transverse 
shear stress, transverse displacement and 
shear strain, except for the function that 
represents shear rotation at neutral axis. 

The present theory gives almost same 
values compared to HSBT and very close 
values to exact elastic solution. 

 

 

Fig 10. Variation of shear Stress across the 

depth of beam at L= 0 (S=4) 
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