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ABSTRACT 
Although rates of bed-form growth for steady flows (Nikora and Hicks 1997), have been clarified, practical 
implications and models accessible to the engineer remain to be elaborated. For example, how and at what rates 
bed forms change for increasing and decreasing flows remains to be quantified. There has not been much 
progress since Julien and Klaassen 1995 in defining a relationship between flow and bed-form characteristics. 
Sediment transport engineers in the current era have a very good idea of the size and shape of a particular dune 
at various discharges and sediment types. But very little is known about the time it takes to change the dune 
when the flow was to experience an increase or decrease. Previous research in this specific area was done by 
(J.R.L. Allen, 1976) who did an earlier model for dune time-lag in periodically varying unidirectional flows.  
 
The research undertook measurements of a river and data over discharge and dune wavelength over the year. 
This data was then computed on a monthly basis. Model showed that hydrograph shape could substantially 
influence dune behaviour in unsteady flows. For the same flow period and extreme discharge values, a reduction 
in the relative duration of the high-water stages causes an increase in the phase differences between dune 
dimensions and flow, and an increase in the dimensions averaged over the flow cycle as compared with the 
similarly averaged dimensions given no lag.  
 
The relative range of dimensions over the flow cycle is little affected. This research is mainly about how the bed 
form reacts to the change in flow and specifically the time it requires for a specific bed form to adopt its new 
bed form in regards to increase/decrease in flow. This research takes an experimental form to develop a 
stochastic modal for the time required for the change in bed-form morphology in relation to the change in flow. 
This includes the dune shape and height. The experimental analysis is in a flume with controlled sediment 
type/density/size, water depth and also the flow rate. The analysis is for the flow in a uni-direction. The depth of 
the dunes, shape and the velocity of the flow is measured by an ADV, and analyzed later using matlab to include 
a 3D representation and analysis. Through which the temporal and special changes in bed form due to change in 
flow is made clear and presented herein.  

 
 
1. INTRODUCTION 

 
Dunes migrating along bars in a river are moving through a spatially changing sediment transport 
field that is associated with the larger-scale bed topography. Dunes respond to this change in their 
environment in three basic ways :( 1) by adjusting their shape,( 2) by adjusting in size, and (3) by 
adjusting their rate of downstream migration. The accommodation path the dunes take on any 
particular section of bar surface seems to be strongly dependent on the character of the bar topography 
forcing the change. Conversely the dynamics of the bar cannot be understood without taking into 
account the effects of dunes. For example, change in their shape as dunes move along point bars 
strongly affects the transport paths of sediment grains of different sizes, thereby affecting the sorting 
of bed material throughout meander bends and the equilibrium shape of point bars.  
 
This stream wise change in dune shape is the consequence of a systematic cross-stream variation in 
dune migration rate. In another example, down current decrease in the average size of dunes has been 
linked directly to the deposition of sediment and growth of languid bars. In this case the average rate 
of migration remains constant as dunes become smaller by transferring sediment into underlying bar 
forms. Clearly, the ability to predict the migration rate of dunes is important to forecasting dune-bar 
interactions. Because dunes are themselves composed of transported sand, their rate of migration must 
be related to the local sediment transport rate. If all sediment moving over dune crests is captured on 
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adjacent lee faces, then by conserving sediment as it is straight forward to relate the rate of dune 
advance to the volume flux of sediment and vice versa. Many trains of dunes are, however, imperfect 
sediment traps, and the behaviors of these dunes cannot be predicted from the sediment transport in a 
channel until the fraction of sediment that is bypassing dunes and therefore not contributing to their 
mass is known.  
 
Accurate prediction of stage and flow developments for a flood must recognize the transient nature of 
erodible-boundary roughness, implying knowledge of bed-form generation and development 
processes as flows increase and decrease in intensity. From an experimental / measurement 
perspective and probably from a theoretical modeling perspective, the transient problem in which 
dune characteristics change over time poses additional severe difficulties beyond those of the 
equilibrium case. For sediment transport engineering, a minimum contribution desired of a theory 
~model, understanding! for bed-form development would be a reliable means of determining which 
equilibrium would be established, i.e., delineating stability boundaries. Attempts have been made to 
base such boundaries on theoretical stability models, a` la Kennedy ~1969!, but engineering 
approaches ~e.g., van Rijn 1984a, b, c! have been primarily based on dimensional analysis  and 
empiricism. 
 
Recent experimental and theoretical works ~e.g., Coleman and Melville 1996; Coleman and Fenton 
2000! have focused on the bed-form initiation process. Are there any implications of initiation and 
instability mechanisms for the finite-amplitude dune bed that is of most practical interest? Although 
turbulence may not be an essential feature of the initial instability of a sediment bed ~Coleman and 
Eling 2000!, does it play a more prominent role at later stages of bed evolution? While the mechanics 
of bed-form development ~Coleman and Melville 1994, and rates of bed-form growth for steady 
flows ~Nikora and Hicks 1997, have been clarified, practical implications and models accessible to 
the engineer remain to be elaborated. For example, how and at what rates bed forms change for 
increasing and decreasing flows remains to be quantified. The problem of transitions to a dune bed 
from a rippled or plane bed and from a dune bed to an upper-regime plane bed or antidune bed is also 
of much practical interest. Has recent work shed any light on this important aspect of non-equilibrium 
beds? Does turbulence modulation drive the dune upper regime plane bed transition? 
 
 

2. PROCEDURE 
 
The aim of this flume experiments is to  see how the bed form reacts to the change in flow and 
specifically the time it requires for a specific bed form to adopt its new bed form in regards to 
increase/decrease in flow. This research takes an experimental form to develop a stochastic modal for 
the time required for the change in bed-form morphology in relation to the change in flow. This 
includes the dune shape and height. The experimental analysis is in a flume with controlled sediment 
type/density/size, water depth and also the flow rate. The analysis is for the flow in a uni-direction. 
The depth of the dunes, shape and the velocity of the flow is measured by an ADV, and analyzed later 
using matlab to include a 3D representation and analysis. Through which the temporal and special 
changes in bed form due to change in flow is made clear and presented herein.  
 
In defining dunes and ripples, the following figure is used. Bed form classification is performed 
accordingly. Additional Phase diagram formed by eliminating time explicitly between the variation 
with respect to time of the independent quantity discharge and the variation with respect to time of the 
chosen dune dimension, the dependent variable. Comparison with theoretical models, show that the 
dune dimensions vary on the same period as the discharge but on a different phase.  
 
Although time is eliminated explicitly, each has only one correct trajectory, namely, anticlockwise in 
all the examples  The loops differ sharply from the theoretical relationships between dune wavelength, 
height and discharge in the absence of lag, that is, had the dunes always responded perfectly to flow 
changes. The effect of increasing dune excursion is to make the dune assemblages of both series 
depart increasingly from this simple theoretical picture. At the smallest excursion, the range of mean 
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actual wavelength is nearly identical with the theoretical range. At the largest excursion , however, the 
wavelength is virtually constant, although the discharge varies nearly six-fold. Mean actual dune 
height responds similarly to changing dune excursion, though the trend is weaker, because the dunes 
individually have some ability to respond in terms of height to the changes of flow, but no ability to 
vary in wavelength. 
 
 
The two series differ most in terms of the shapes of the phase diagrams . Loops from Series tend to a 
smoothly oval form, closely resembling yielded by the earlier model for comparable excursions and 
the same simple-harmonic discharge variation (i.e. k--1). In contrast, graphs from Series B tend to be 
either pointed or flattened on the side representing low discharges. In these experiments, distinguished 
by a long low-water season, there are large reductions in dune dimensions over this extended period 
of almost constant flows. 
 
 
Equivalent phase differences 
A quantitative estimate of the phase difference between the variation of discharge and the variation of 
some dune dimension is obtainable using an earlier procedure. Briefly, the area of each loop is 
measured graphically, together with the area of the smallest escribed rectangle that has sides parallel 
with the ordinate and abscissa of the graph. The phase difference is estimated as an "equivalent" value 
by introducing the ratio of the two areas into the graphed function relating area ratio to phase 
difference in a doubly simple-harmonic theoretical model. It was earlier found that the equivalent 
phase difference generally increased with increasing excursion and time ratio, the latter a measure of 
the ratio of the long-term mean theoretical dune life-span to the flow period.  
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In each Series the equivalent wavelength phase difference increases steeply with the time ratio for 
small values of the ratio. At larger ratios, equivalent phase differences comparable with 7r/2rad are 
obtained. Some of the phase diagrams are ambiguous, however, affording a phase difference either 
somewhat smaller or a little larger than 7r/2 rad. A similar ambiguity was occasionally found earlier. 
At the larger time ratios, appear to yield the smaller wavelength phase differences. 
 
The equivalent height phase difference also increases steeply with the time ratio for small values of 
the ratio. There are no ambiguous loops, however, the larger differences over the full range of 
experimental conditions. The generally smaller phase differences obtained for height as compared 
with wavelength may also be attributed to the effect of the non-zero coefficient of change, causing the 
dune assemblages to lag less in height than in wavelength. 
 
 
 
Instantaneous phase differences 
The phase difference as estimated above is merely a "characteristic" value, which could diminish in 
usefulness as the experimental system becomes more complex in behavior. Following an earlier 
discussion, when it was suggested that the life-span of a bed form was set partly by the prevailing 
environmental conditions, it seems likely that this characteristic difference is in truth a time-average, 
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determined by the changing dune properties over the whole flow cycle. Because the equivalent phase 
difference increases with the time ratio, the difference must also increase with the long-term actual 
dune life-span. It follows that, although excursion is constant in each experiment, the life-span of a 
large dune created at high discharge will be substantially more than that of a small dune fashioned at 
low stage. Hence when large long-lived dunes typify the bed, we should expect to observe different 
values of an "instantaneous" phase difference (perhaps generally larger) than when small short lived 
forms predominate. 
 
The practical estimation of the instantaneous difference may be illustrated by the case for dune 
wavelength. Dune wavelength in the model theoretically is linearly proportional to flow depth, which 
itself varies as the discharge to the power 2/3. 
 
 
3. DISCUSSION 
 
Ripples and dunes in many natural environments are subject to flows having high-frequency 
directional variations and can be expected to follow the same rule of alignment as the experimental 
wind ripples and subaqueous dunes. The dominant bedform trend parallels the resultant transport 
direction (upper right to lower left), but as the experimental conditions are near the transition to 
transverse bedforms, transverse bedforms are present also. 
 
Although the vector resultant is the appropriate parameter for describing the net rate and direction of 
sediment transport, the problem of bedform genesis is so different that another parameter is needed to 
characterize flow conditions. When sediment is transported toward opposing directions, the opposing 
transport cancels out-a physical process that is accurately described when the resultant is calculated. 
 
 It can be argued that all transport should be considered to have a positive effect, because all transport 
may be involved in creating bedforms. For example, consider a wave-generated onshore-offshore 
flow combined with a small unidirectional alongshore flow. If the onshore and offshore components 
are equal, then they cancel out, and the resultant of the system is equal to the unidirectional vector. 
Regardless of the strength of the onshore-offshore flow, it has no effect on the resultant-yet it is 
typically this stronger wave generated oscillatory flow that is responsible for producing bedforms.  
 
For problems of bedform alignment, a new parameter is needed to characterize a multidirectional flow 
in such a manner that flow toward opposing directions is represented rather than cancelled. 
One such parameter is 'gross bedform-normal transport. Transport over any bedform can be resolved 
into two components, one normal to the bedform trend and one parallel to the bedform trend. In a 
purely unidirectional flow, all transport over perfectly transverse bedforms is bedform-normal, and no 
transport over longitudinal bedforms is bedform-normal.  
 
Where a bedform is subject to two or more transport vectors, bedform-normal transport is defined as 
the sum of the bedform-normal components. Net bedform-normal transport is the sum of the bedform-
normal components, considering forward transport across the bedforms to be positive and reverse 
transport to be negative. Gross bedform-normal transport is the sum of the bedform-normal 
components, considering all transport to be positive. By treating all transport as positive, no transport 
is lost to the cancellation of opposing vectors. 
 
A complexity arises when determining bedform normal transport of a flow because the quantity 
cannot be determined independently of bedform orientation; a single multidirectional flow has 
different amounts of bedform-normal transport for different arbitrary bedform orientations.  
 
Results of the present experiments with subaqueous dunes and the previous experiments with wind 
ripples indicate that the bedforms take the orientation that for the given pair of flow vectors has the 
'maximum gross bedform-normal transport' 
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