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Abstract 

Recently in Japan, long span steel bridge systems with double I-type girders have been constructed 

for the reasons of reductions of construction cost and time of construction work, and simplicity of 

maintenance. This types of bridges have small numbers of girders, therefore, it is inherently difficult 

to determine the sizes of member elements, such as rubber bearing, RC pier and concrete pile 

foundation, so as to satisfy the ultimate performance constraints due to devastating earthquakes. In 

this study, the optimum design method is developed for the seismic design of steel bridge system with 

double I-type girders in which the design of experiments is successfully utilized in order to estimate 

the dynamic behaviours and sensitivities of the ultimate performance constraints with respect to the 

design variables. The optimum solutions of the heights of rubber bearings, cross-sectional dimensions 

and amount of steel reinforcements for RC piers and the detail of concrete pile foundation are 

determined by a classical branch and bound method. From the numerical example of five-span 

continuous steel bridge system with double I-type girders, it is emphasized that the optimum solutions 

can be obtained quite efficiently by the proposed design method. The effectiveness and efficiency of 

the optimum design method is also illustrated. 

Keywords: optimum seismic design, steel bridge system with double I-type girders, Performance-

based design, design of experiments, time-history response analysis 



1. INTRODUCTION 

In the seismic design of bridge according to the Japanese Specification for Highway Bridges, JSHB 

(Japan Road Association 2002), the bridge members are not allowed to yield for the frequent 

earthquakes and those must have the sufficient ultimate dynamic capacities to be able to repair those 

rapidly after the excitations due to devastating earthquakes.  

In the design of bridge system, engineers must consider life cycle cost including initial construction 

cost and maintenance cost, and simplicity of maintenance. From this viewpoint, long span steel bridge 

systems with double I-type girders have been constructed recently in Japan. In this type of bridge 

system the volumes of rubber bearings under the main girders are regulated, therefore the 

determinations of each member sizes, which ensure the performance specified at the ultimate state due 

to devastating earthquakes, accompany with difficulty in the seismic design.  

In this paper, a rational and efficient optimal performance-based seismic design method is proposed 

for the bridge system with double I-type girders subjected to devastating earthquakes. The 

optimization problem is formulated in order to find the heights of rubber bearings, cross-sectional 

dimensions and amount of steel reinforcements for RC piers, and numbers of piles and the diameters 

of piles in the cast-in-place concrete pile foundation which minimize the total construction cost. 

The design constraints are the relative horizontal displacements for the rubber bearings and the ductile 

factor for the RC piers and the constraint on the cast-in-place concrete pile foundation specified in 

JSHB. From the practical design the heights of rubber bearings can take continuous values, but the 

other variables must be selected from discrete variable sets. The optimization algorithm for the mixed 

discrete-continuous problems is developed in cooperation with classical branch and bound method 

(Huang and Arora 1997), dual algorithm and convex approximation (Fleury and Braibant 1986, 

Taniwaki and Ohkubo 2004), and the design of experiments (Taguchi 1987) in this study. The design 

of experiments is successfully utilized in order to estimate the dynamic behaviours and sensitivities of 

the ultimate performance constraints without any time-history response analyses in the optimization 

process. 

The proposed optimal design method is applied to a five-span continuous steel girder bridge system 

with double I-type girders, and the optimal solutions at various allowable ductility factors of RC pier 

are discussed to illustrate the rigorousness of the proposed design method. It is also emphasized that 

the optimum solutions can be obtained efficiently with small numbers of time-history response 

analyses by introducing the estimation formulae in the design of experiments. 

2. OPTIMUM DESIGN FORMULATION AND OPTIMIZATION ALGORITHM 

2.1 Design Model 

In this study, the five-span continuous steel girder bridge system with double I-type girders shown in 

Fig.1 is considered in which the superstructure is supported by six rubber bearings, RC piers and the 

cast-in-place concrete pile foundation. The front and side views of a pier and RC pile foundation are 



described in Fig.2. The length of piles is 15m and five types of soil conditions in stratum in Fig.3 are 

considered to calculate the spring constant and the properties of three types of RC pile foundations are 

summarized in Table 1, in which the construction costs of a pile are assumed to be 65200yen/m
3 
for 

the diameter 1.0m and 73800yen/m
3
 for the diameter 1.2m, and the construction costs of footing and 

form for pile foundation are assumed to be 33500yen/m
3 
and 8000yen/m

2
, respectively. 

The piers are divided into 50 segments in order to calculate the nonlinear dynamic behaviours 

accurately. The reinforcements in the cross section of piers are arranged in two layers for the bridge 

direction and one layer for the transverse direction, and the spacing of each reinforcement are fixed at 

125mm as shown in Fig.4. With enlargement of cross section, the number of reinforcements is 

increased so as to keep the spacing of reinforcements. The stiffness of a RC pier is modelled using the 

 

Fig.1 Five-span continuous steel girder bridge system 
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Fig.2 Front and side views of piers and RC pile foundation 
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trilinear rigidity reduction type model (Takeda model) shown in Fig.5. The nonlinear behaviours of 

the bridge system for both the bridge and transverse directions subjected to devastating earthquakes 

are analyzed precisely by the time-history response analysis using the general purpose nonlinear 

analysis software, TDAP-III, in which the Type II standard strong acceleration wave motion model in 

Fig.6 is applied.  

2.2 Optimum Design Formulation  

In the design of the bridge system, the dimension of superstructure is assumed to be given and widths 

of rectangular rubber bearings are assumed to be 90cm and 100cm at abutment and piers, respectively. 

The design variables for rubber bearings are the heights of those at abutment and piers, 1hB , 2hB  

Table 1 Properties of three types of RC piles 

 

Diameter Ф
Number of

piles

Width of

footing (bridge

direction)

Width of footing

(transverse

direction)

Height of

footing

Construction

cost (10
3
yen)

Kh(kN/m)
Kθ1(kNm/rad)

(bridge direction)

Kθ2(kNm/rad)

(transverse

direction)

S-R spring

(kN/rad)
Weight(ｋN)

1.0m 9 7.0m 7.0m 2.5m 13,466 2212657 23604414 23604414 -3001351 3001.3

1.2m 9 8.4m 8.4m 2.5m 16,544 2762476 38430822 38430822 -4437599 4321.8

1.0m 12 7.0m 9.5m 2.5m 17,965 2950210 31472551 49511633 -4001802 4073.1

Pile construction cost: 65200yen/cm
3（Diameter1.0m)，73800yen/cm

3（Diameter1.2m），Form：8000yen/cm
2，concrete：18500yen/cm

3

 

Fig.3 Soil condition  
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Fig.4 Cross section of a pier 
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Fig.5 Trilinear rigidity hysteresis model for 

RC pier (Takeda model) 
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Fig.6  Acceleration wave motion model 
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and 
3hB . For the cast-in-place concrete pile foundations (RC pile foundation) the properties of 

horizontal and rotation spring constants are calculated considering the numbers of piles and diameters 

of piles. In this study the horizontal spring constant of RC pile foundation, 
hK , which is the common 

factor to both the bridge and transverse directions for the time-history response analysis, is considered 

as the design variable. The widths to the bridge and transverse directions and the amount of steel 

reinforcements in a cross section, 
PH , 

PB  and 
sA , are taken into account as the design variables 

for RC piers. The bridge system shown in Fig.1 is symmetrical about the centreline and the total 

number of design variables is eleven ),,,,,,,,,,( 21212121321 PPSSPPhhhhh BBAAHHKKBBB . In those design 

variables, the discrete design variables are expressed as 
PSPhh BAHKB ,,,, . In this study, the 

discrete design variables 
SPh AHK ,,  and 

PB  are selected from the following sets;  

  2950210,2762477),/(2212657 mkNhK  

   2700,2600,2500,2400),(2300 mmPH  

  6.956,2.794),(4.642 2mmSA  

  4500,4000),(3500 mmPB  

The bridge system must have sufficient ultimate dynamic capacities for large displacements caused by 

devastating earthquakes. Therefore, the relative horizontal displacements between superstructure and 

piers in both the bridge and transverse directions are dealt with as the design constraints,

321321 ,,,,, ttthhh gggggg , for the safety of the rubber bearings. Furthermore, the ductile factors are also 

dealt with as the design constraints for the RC piers, 
21,  gg , so as to ensure the performance at the 

ultimate state. The equations for design constraints are; 

0)( 1111  hahh Bg          (1) 

0)( 2222  hahh Bg   (2) 

0)( 3333  hahh Bg   (3) 

0)( 1111  hatt Bg   (4) 

0)( 2222  hatt Bg   (5) 

0)( 3333  hatt Bg   (6) 

011  ag   (7) 

022  ag   (8) 

where 1a , 2a  and 3a  are the allowable relative horizontal displacements of bearings at abutment 

and piers, which are given as the products of the heights of bearings 1hB , 2hB  and 3hB  multiplied 

by 2.5. The parameter   is the ductile factor of a pier, which is given by the ratio of working 

curvature to the yield curvature for the bridge direction. The parameter
 a  is the allowable ductile 

factor which is assumed considering the condition of construction site for earthquake. If the 

construction site is the area where the high possibility of devastating earthquakes will be predicted in 

near future, a  should be set at the lower value considering the repair cost after the excitation of 

earthquake.  

In the design of RC pile foundation, the fundamental concept following the JSHB is that RC pile 

foundation is not allowed to yield when the horizontal ultimate dynamic bearing capacity in the RC 

pier is not enough large. On the contrary, RC pile foundation is allowed to yield up to the ductile 

factor 4.0 when the bearing capacity in the RC pier is enough large. This constraint is investigated by 



analyzing the nonlinear frame structure of RC pile foundation, in which the applied forces V0,M0,H0 

are given as the corresponding forces to the horizontal ultimate dynamic bearing capacity for the RC 

pier.  

This constraint of RC pile foundation is quite complex to take into account in the optimization 

process. Furthermore, the design variable for RC pile foundation depends on the design variables for 

the sizing variables of RC pile. Therefore, it is difficult to deal with the design variable for RC pile 

foundation together with the sizing variables of RC pier simultaneously. To simplify the optimum 

design problem, therefore, it is assumed that the design variable for RC pile foundation is 

independent, and the constraint on the RC pile foundation is not dealt with in the optimization 

process. After the determination of optimum solution the constraint on the RC pile foundation is 

investigated.  

The total construction cost minimization problem, which is expressed as the summation of bearing 

construction cost, )( hBBCOST ，foundation construction cost,  hKFCOST , and pier construction 

cost,  PSP BAH ,,PCOST , can be formulated as 

find           
PSPhh BAHKB ,,,,     which 

minimize       ),,,,( PSPhh BAHKBC O S T  
)()( hh KB FB COSTCOST  ),,,( PSP BAHPCOST  (9) 

subject to the constraints in eqs.(1)-(8). 

In the optimum design problem hB  can take 

continuous values, but the others must be 

 

Fig.7 Macro-flow of the proposed optimum design 

method 
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Table 2 Orthogonal array table )3( 13

27L  

 

No. 1 2 3 4 5 6 7 8 9 10 11 12 13

No.1 1 1 1 1 1 1 1 1 1 1 1 1 1
No.2 1 1 1 1 2 2 2 2 2 2 2 2 2
No.3 1 1 1 1 3 3 3 3 3 3 3 3 3

No.4 1 2 2 2 1 1 1 2 2 2 3 3 3
No.5 1 2 2 2 2 2 2 3 3 3 1 1 1
No.6 1 2 2 2 3 3 3 1 1 1 2 2 2

No.7 1 3 3 3 1 1 1 3 3 3 2 2 2
No.8 1 3 3 3 2 2 2 1 1 1 3 3 3
No.9 1 3 3 3 3 3 3 2 2 2 1 1 1

No.10 2 1 2 3 1 2 3 1 2 3 1 2 3
No.11 2 1 2 3 2 3 1 2 3 1 2 3 1
No.12 2 1 2 3 3 1 2 3 1 2 3 1 2

No.13 2 2 3 1 1 2 3 2 3 1 3 1 2
No.14 2 2 3 1 2 3 1 3 1 2 1 2 3
No.15 2 2 3 1 3 1 2 1 2 3 2 3 1

No.16 2 3 1 2 1 2 3 3 1 2 2 3 1
No.17 2 3 1 2 2 3 1 1 2 3 3 1 2
No.18 2 3 1 2 3 1 2 2 3 1 1 2 3

No.19 3 1 3 2 1 3 2 1 3 2 1 3 2
No.20 3 1 3 2 2 1 3 2 1 3 2 1 3
No.21 3 1 3 2 3 2 1 3 2 1 3 2 1

No.22 3 2 1 3 1 3 2 2 1 3 3 2 1
No.23 3 2 1 3 2 1 3 3 2 1 1 3 2
No.24 3 2 1 3 3 2 1 1 3 2 2 1 3

No.25 3 3 2 1 1 3 2 3 2 1 2 1 3
No.26 3 3 2 1 2 1 3 1 3 2 3 2 1
No.27 3 3 2 1 3 2 1 2 1 3 1 3 2

Factor



selected from a list of discrete values. Therefore, the construction cost minimization problem can be 

expressed as a mixed discrete-continuous problem. Several types of optimization techniques have 

been developed, and Huang and Arora (1997) investigated the efficiency and reliability of those for 

discrete and mixed discrete-continuous problems. In this study the optimization problem is solved by 

the classical branch and bound method with dual algorithm and convex approximation (Fleury and 

Braibant 1986, Taniwaki and Ohkubo 2004) for the reason that the approach is efficient and reliable 

for a mixed discrete-continuous problem without any parameters.  

2.3 Optimization Algorithm 

The macro-flow of the proposed optimization algorithm is depicted in Fig.7. In the optimization 

process, in general, a number of nonlinear seismic response analyses and sensitivity analyses are 

necessary to determine the optimal solutions. To avoid these complexity and difficulties and make the 

optimum design process tremendously efficient, the design of experiments (Taguchi 1987) is applied 

to introduce the estimation formulae for the dynamic behaviours. The dynamic behaviours and those 

sensitivities are calculated by using the estimation formulae without analyzing the structure. In the 

design of experiments, according to the orthogonal array table )3( 13

27L  (Taguchi 1987) given in 

Table 2, the three levels for all design variables are assumed and the twenty seven runs of nonlinear 

seismic response analyses are carried out using TDAP-III for both the bridge and transverse 

directions, respectively. The first eleven factors among thirty factors in Table 1 are assigned to the 

design variables ,,,,, 21321 hhhhh KKBBB 212121 ,,,,, PPSSPP BBAAHH , respectively. Assuming that the 

intended variable for the kth factor is kx  and the mean value of three levels )3,,1(ˆ ixki for the kth 

factor is 
kx , the general form of estimation formula is introduced in the expression of quadratic 

functions of the design variables given in eqs.(10)-(13). 
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m is the number of design variables (= 11). The estimated values of 0b , 1kb  and 2kb  in eq.(10) are 

given as 
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r  is the number of runs with the level kix̂  (= 9). kiT  is the summation of results by the design of 

experiments with the level of kix̂ . kiW  is the value of coefficient with respect to 1kb  and 2kb  

obtained by replacing kz  with kiẑ  in eq.(10). Namely, the values are given by kiki zW ˆ  and 
2

23

2

2
ˆˆ

kikkikkki zMzMMW  . 



After the determination of optimum solutions the design constraints with the estimation formulae are 

examined by re-analyzing the bridge system. In case that the design constraints violate the allowable 

limit, the three levels for all design variables and estimation formulae for dynamic behaviours are 

improved and the minimum cost design problem is re-solved. This optimization process is iterated 

until the relative errors between the estimated design constrains and the exact ones satisfy the 

allowable limit. After the determination of design variables the constraint of RC pile foundation is 

investigated. If the constraint is violated, the RC pile foundation is replaced with the larger one and 

the bridge system is re-optimized.  

3. DESIGN EXAMPLES 

The proposed optimal design method is applied to the five-span continuous steel girder bridge system 

shown in Fig.1 and the optimal solutions for 5.1a , 2.0 and 2.5 are discussed. The unit cost of 

rubber is 45yen/cm
3
. The construction costs of concrete, form and reinforcement for piers are assumed 

to be 18500yen/m
3
, 8000yen/m

2
 and 120000yen/tf, respectively. The levels for 5.1a , 2.0 and 2.5 

are set as shown in Table 3. In the optimization process, the lower and upper limits for discrete design 

variables are set at the minimum and maximum values of the three levels. The optimum solutions of 

design variables, ultimate bending moments of piers, feasibilities of the design constraints for 
a

=1.5, 2.0 and 2.5 are summarized in Table 4. 

In the case of 5.1a , 2hB  is the lower limit and 3hB  is nearly the lower limit. According to the 

flow-chart in Fig.7 the RC pile foundation is replaced by the largest one which indicates the highest 

cost. The pile foundations for P1 and P2 yield for the bridge directions of P1 and P2, and the transverse 

direction of P1. However, all constraints on RC pile foundation are satisfied. The estimation formulae 

of relative displacements can be introduced quite accurately by the design of experiments within 1.0 

percent differences compared with that obtained by analysis. On the contrary, the ductile factors in P1 

and P2 by the estimation formulae are 22.5 percent and 16 percent larger than those by analysis, 

respectively. At the optimum solution 1hg  and 2tg  are active. 

In the case of 0.2a , 1hB  is almost the same as that of the case of 5.1a . 2hB  and 3hB  are 

the lower limit. The ultimate bending moments in P1 and P2 are smaller than those of 5.1a  and 

the pile foundations for P1 and P2 do not yield for all directions of P1 and P2. All constraints are 

Table 3 Level in the optimization process 

 

Bh2
12.0(16667) kh1

2212657 HP1
2300.0 AS1

642.4 BP1
3500

Bh3 12.0(16667) kh2 2212657 HP2 2300.0 AS2 642.4 BP2 3500

Bh2
13.0(15385) kh1

2762476 HP1
2500.0 AS1

794.2 BP1
4000

Bh3 13.0(15385) kh2 2762476 HP2 2500.0 AS2 794.2 BP2 4000

Bh2
14.0(14286) kh1

2950210 HP1
2700.0 AS1

956.6 BP1
4500

Bh3 14.0(14286) kh2 2950210 HP2 2700.0 AS2 956.6 BP2 4500

Bh1

Bh1

Bh1

HP1, HP2(mm)
Bh1, Bh2（cm)

 (spring constant(kN/m))
kh1, kh2(kN/m) AS1, AS2 (mm

2
) BP1, BP2(mm)

3 16.0(10125)

1 12.0(13500)

2 14.0(11571)

Bh1（cm)

 (spring constant(kN/m))
Level



 

Table 4 Optimum solutions for a 1.5, 2.0 and 2.5 

 

D.exp.* 1.000 D.exp.* 1.000 D.exp.* 0.997

Anal** 0.997 Anal** 0.994 Anal** 1.000

D.exp.* 0.929 D.exp.* 0.907 D.exp.* 0.894

Anal** 0.920 Anal** 0.905 Anal** 0.891

D.exp.* 0.914 D.exp.* 0.909 D.exp.* 0.899

Anal** 0.912 Anal** 0.901 Anal** 0.894

D.exp.* 0.892 D.exp.* 0.881 D.exp.* 0.910

Anal** 0.886 Anal** 0.878 Anal** 0.910

D.exp.* 0.986 D.exp.* 0.973 D.exp.* 0.970

Anal** 0.980 Anal** 0.972 Anal** 0.970

D.exp.* 0.951 D.exp.* 0.953 D.exp.* 0.950

Anal** 0.944 Anal** 0.950 Anal** 0.947

D.exp.* 0.968 D.exp.* 0.953 D.exp.* 0.903

Anal** 0.743 Anal** 0.866 Anal** 0.970

D.exp.* 0.991 D.exp.* 0.957 D.exp.* 0.799

Anal** 0.831 Anal** 0.985 Anal** 0.949

4000 4000 3500

3500

P1: not yield

P2: not yield

3500 3500

68173 58594

99284 86428

66287 57199

P1: not yield

P2: not yield

154.167

2762476
(φ=1.2m, n=9）

2600

2600

794.2

794.6

53148

68371

53457

2.5

14.603

(11094)

12.000

(16667)

12.000

(16667)

2762476
(φ=1.2m, n=9）

163.694

Yield constraints

of pile foundation

for bridge direction

Yield constraints

of pile foundation

for transverse

direction

Total cost (10
6

yen）
161.693

P1: yield, Pu1 >1.5KhcW1

satisfy all constraints

P2: yield, Pu2 >1.5KhcW2

satisfy all constraints

P1: not yield

P2: not yield

P1: yield, Pu1 >1.5KhcW1

satisfy all constraints

P2: not yield

P1: not yield

P2: not yield

D.exp.* : Feasibility of design constraints with the estimation formulae by the design of experiments  

Anal** : Feasibility of design constraints using exact behaviors by analysis  

12.000

(16667)

12.000

(16667)

12.232

(16351)

12.000

(16667)

2600 2600

2700 2700

2950210
(φ=1.0m, n=12）

2950210
(φ=1.0m, n=12）

2950210
(φ=1.0m, n=12）

2950210
(φ=1.0m, n=12）

956.6 794.2

Kh2(kN/m)

(φ, n)

HP1（mm）

AS1（mm
2）

1.5 2.0

14.670

(11043)

14.709

(11014)

956.6 794.2

Allowable

ductile factors

Bh1(cm)

（kN/m）
Bh2(cm)

（kN/m）
Bh3(cm)

（kN/m）
Kh1(kN/m)

(φ, n)

constraint gt2

constraint gt3

constraint gμ1

constraint gμ2

P1

P2

Muh1（kNm）

Muh2（kNm）

Mut2（kNm）

BP1（mm）

HP2（mm）

AS2（mm
2）

BP2（mm）
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estimated accurately by the design of experiments within 8.7 percent difference compared with that 

obtained by analysis. At the optimum solution, 
1hg , 

2tg , 
2tg  and 2g  are active. We can observe 

1.2 percent reduction in the total cost compared to that in the case of 5.1a . 

In the case of 5.2a , 
1hB  is also nearly the same as those for other cases. 

2hB  and 
3hB  are also 

determined by the lower limit. The ultimate bending moments in P1 and P2 are smaller than those of 

0.2a . The second largest pile foundations for P1 and P2 are selected and those foundations do not 

yield for all directions of P1 and P2. The constraints of relative displacements are estimated accurately 

by the design of experiments within 0.5 percent difference compared with that obtained by analysis. 

The optimum solution is feasible, however the ductile factors in P1 and P2 by the estimation formulae 

are 6.7 percent and 15 percent smaller than those by analysis, respectively. At the optimum solution, 

1hg , 2tg , 1g  and 2g  are active. We can observe 4.65 percent reduction in the total cost can be 

observed compared to that in the case of 0.2a . 

From the numerical example, it is clear that the constraints of relative displacements are estimated 

quite accurately by the design of experiments. The constraints of ductile factor can be estimated 

comparatively accurately near the mean value of ductile factors obtained by twenty seven runs shown 

in Table 2. However, as the ductile factor is different from the mean value the estimation of ductile 

factor become inaccurate.  

4. CONCLUSIONS 

The following conclusions can be drawn from this study: 

1) The proposed optimal design method can determine the heights of rubber bearings, cross-sectional 

dimensions and amount of steel reinforcements for RC piers, and numbers and diameters of piles 

for bridge system with double I-type girders rigorously and efficiently.  

2) By applying the design of experiments, the estimation formulae for the relative horizontal 

displacements to the bridge and transverse directions can be introduced accurately with small 

number of nonlinear seismic response analyses. The accuracy of the estimation formulae is 

excellent within 1.0 percent difference between the exact behaviours and estimated ones. 

3) The constraints of ductile factor can be estimated comparatively accurately near the mean value of 

ductile factors obtained by twenty seven runs. However, as the ductile factor is different from the 

mean value the estimation of ductile factor become inaccurate. Therefore, we need to pay attention 

in the applicable range of the estimation formulae for ductile factor in the optimization process.  

4) The heights of rubber bearing at abutment are nearly the same for any allowable ductile factors. 

Almost all heights of rubber bearings at piers are determined the lower limit. The optimum 

solutions are determined by the constraints of 1hg , 2tg , 1g  and 2g . 



5) In the proposed design process, the constraint on the RC pile foundation is not dealt with in the 

optimization process and, then, the RC pile foundation is replaced with the larger one so as to 

satisfy the constraint on the RC pile foundation. This design process can simplify the optimization 

algorithm greatly. 
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