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Abstract 

Secondary containments are installed surrounding aboveground storage tanks containing petroleum 

products to prevent soil, groundwater and surface water contamination in the event of a leak or to 

prevent spread of fire to adjacent properties in the event of a fire. Requirements for secondary 

containments are strictly regulated through industry standards and guidelines developed by 

environmental regulatory authorities of federal and provincial/state governments across North 

America.  

Earthen dykes containing impermeable layer/liner are often installed surrounding large storage tanks 

to provide secondary containment. Desired containment volume is achieved by increasing the area of 

containment or the height of dyke or both. Earthen dykes can be expensive to maintain and clean in 

the event of a leak. Earthen dykes require considerably more real estate than dykes built using 

concrete walls supported by a system of lateral bracings. Concrete dykes can be a cost effective 

alternate solution when compared with the lifecycle cost of earthen dykes. 

The economic design can be achieved by optimizing dyke wall thickness and/or lateral support 

spacing. Slenderness and crack control are critical design parameters for an optimized design. Hence 

the design of optimized concrete dykes is governed by displacement criteria. The mid-span lateral 

displacement due to hydrostatic pressure can be controlled by embedding a weaker steel member at 

the top of the concrete wall panel and a stronger steel member at the bottom of the concrete wall 

panel that is designed to allow uniform mid-span lateral displacement across the wall. Strength of the 

wall panel is calculated by enforcing displacement compatibility of steel and concrete.  

This paper will outline a simplified design method for concrete dykes and discuss design parameters, 

methodologies, tools, and limitations. Finite element analysis will be used to validate the proposed 

design methodology. 

Keywords: Concrete Dyke, Secondary Containment, Slenderness, Crack Control Parameter, Finite 

Element Analysis. 



1. Introduction 

Secondary containment provides an essential line of defence in the event of a leak or a failure of an 

oil container (primary containment), such as a bulk storage tank, a mobile or portable container, 

pipes, or other oil-filled operational equipment. The secondary containment provides a temporary 

containment for spilled oil until appropriate actions are taken to abate the source of the discharge and 

remove the spilled oil before it reaches navigable waters and adjoining shorelines. The entire 

containment system, including walls and floor, must be constructed so that any discharge from a 

primary containment system will not escape the containment system before clean up occurs.  

A secondary containment shall be provided for a single or multiple aboveground storage tanks using 

permanent, engineered barriers, such as dykes, berms, raised earth embankments or concrete 

containment walls sufficiently impervious to contain oil.  

The regulations of Environment Canada - Part 3 CCME PN 1326 (2003) and Environmental 

Protection Agency of USA, Chapter 4: Secondary Containment and Impracticability (2005) specify 

the requirements of secondary containments for all areas with a potential for a discharge of harmful 

substances from primary containments. In general, provisions for secondary containment require that 

the chosen containment type be sized to contain the entire volume of the largest oil tank plus 

“sufficient freeboard” to contain precipitation. 

An engineered secondary containment system such as a dyke, berm or concrete wall system should 

include (CFR Directive 40 Chapter 1 (2003)): the required capacity to contain oil and sufficient 

freeboard to contain precipitation in accordance with good engineering practice and the requirements 

of the rules applicable to the jurisdiction; no cracks in containment material (e.g. concrete, liners, 

coatings, earthen materials) or discoloration and the materials meet the permeability requirements; no 

spilled or leak material (standing liquid); no corrosion or erosion of the system; Operational 

provisions to drain and drainage controls; Preventive measures for burrowing animals creating holes 

or penetration to the containment system. 

2. Design Requirement for Secondary Containment 

As per Environment Canada - Part 3 CCME PN 1326, section 3.9, a secondary containment system 

for an aboveground storage tank shall be sized to: “1). for a storage tank system that consists of a 

single storage tank, have a volumetric capacity of not less than 110% of the capacity of the tank; or 

2). for a storage tank system that consists of more than one storage tank, have a volumetric capacity 

of not less than the sum of: the capacity of the largest storage tank located in the contained space; 

and 10% of the greater of: the capacity of the largest storage tank located in the contained space; or 

the aggregate capacity of all other storage tanks located in the contained space.” 

The area surrounding a single-walled aboveground storage tank must have a secondary containment 

system designed to contain leakage. Secondary containment systems must consist of an impervious 



liner and a dike. The area within the secondary containment system must be graded to a sump or low-

lying area (within the diked area) to allow for the collection of rainwater, snow-melt water, and any 

possible leakage from the tanks. No uncontrolled discharge of collected fluids or discharge of 

untested fluids is permitted.  

A dike must 1). be constructed of soil, steel, concrete, solid masonry, or synthetic material and 

designed to contain liquids within the diked area, to be able to withstand the hydrostatic head 

associated with it being full of liquid, and so that it will not deteriorate or develop leaks during the 

projected life of the structure; 2). be sized to have a required volumetric capacity; 3). have no 

openings in it; and 4). be maintained in good condition. The area encompassed by the dike must be 

kept free from weeds, debris, and extraneous combustible material. 

A liner must; 1). be of a material that is inert to or compatible (chemically resistant) with the material 

being stored in the tank; 2). be impervious; 3). be durable and appropriate for the operating in various 

ambient conditions; and 4). cover the area within the dike, including the area beneath the tanks, and 

be keyed into the dike walls. 

3. Earthen Dykes 

Earthen dykes are the most commonly used secondary containment system across North America. 

Earthen dykes (Figure 1) are built using well graded clay materials with a minimum of 1 m wide 

levelled top, 2.5: 1 to 3:1 side slopes with a minimum of 0.6 m thick impermeable Compacted Clay 

Linear (CCL) inside the dyke and on the base of the entire containment. The design height of the 

dyke depends on the required containment volume. For the purpose of secondary containment, the 

clayey soil must be compacted to achieve a hydraulic conductivity of 1 x 10
-6

 cm/s or less determined 

in situ or 1 x 10
-7

 cm/s or less determined in a laboratory from a representative disturbed sample 

(material must meet hydraulic conductivity requirements under full hydrostatic head) as per ERCB 

directive 55 (2001).  

 

 

 

 

 

 

Figure 1: Typical cross-section of an earthen dyke 



A hydraulic conductivity of ≤ 1 x 10
-7

 cm/s is achievable if suitable starting material (clayey soil) is 

excavated, reworked, or homogenized and laid down and compacted in lifts following appropriate 

construction protocols on a properly prepared sub-base. Well graded clay material meeting ERCB 

specifications should be compacted to a minimum of 95% Standard Proctor Maximum Dry Density at 

2% to 3 % of optimum moisture in lifts not exceeding 150 to 200 mm. The construction of earthen 

dykes with CCL requires an application by qualified personnel overseen by an experienced 

professional geotechnical engineer. 

4. Concrete Dykes 

Usage of precast concrete dykes (Figure 2) is becoming increasingly popular as a secondary 

containment for large aboveground storage tanks, due to the fact that: the earthen dykes require 

considerably more effort, time and quality control to build; are often subjected to vegetation, erosion 

and abuse by burrowing animals; are difficult and expensive to maintain over the service life; are 

significantly more expensive to clean up in an event of a leak (or decommission upon reaching its 

service life); and require considerably more real estate.  

Precast concrete dykes require considerably less real estate; are relatively easy to install; are easy to 

maintain (and decommission); can be reused; and are aesthetically appealing. 

 

 

 

 

 

 

 

Figure 2: Typical cross-section of a concrete dyke 

The precast concrete panels designed to support full hydrostatic pressure are often supported by steel 

lateral support braces on piles foundations. The lateral braces for relatively short walls can be 

supported on concrete sleepers in place of piles.  

Existing earthen dykes are often replaced by concrete dykes when increased secondary containment 

volume is required due to adding new tanks or increasing volume of the primary containments, 

especially when additional real estate for containment is not available. 



5. Example: Earthen Vs Precast Concrete Wall Panel Dykes 

This section compares secondary containment sizing requirements for an 80,000 m
3
 (503,185 bbl) 

aboveground storage tank using an earthen dyke and a concrete dyke.  

The required size of the secondary containment is 88,000 m
3
, which is 110% of primary containment 

of the tank volume. 

The required height of a concrete dyke to contain 88,000 m
3
 on a 200 m x 200 m footprint is 2.58 m. 

The concrete wall panels are supported by 1.5 m wide lateral support bracings at 6 m spacing. The 

volume of concrete required is 406 m
3
 for 200 mm thick wall panels.  

To maintain a 200 m x 200 m footprint, the required height of an earthen dyke with a 3:1 side slopes 

and a 1 m wide flat top is 3.42 m. The required volume of fill clay material is 27,435 m
3
. The height 

of the dyke is increased by 33% over the concrete wall height, and hence the width of the toe 

becomes 21.5m wide (Figure 3). 

To maintain a 2.58m earthen dyke height, the required size of the footprint increases to 214 m x 214 

m (15 % more real estate). The required volume of fill clay material is reduced to 17,788 m
3
, which is 

54 % less clay material, provided the additional 15% real estate is available.  

 

 

 

 

 

 

 

Figure 3: Typical layout of earthen and concrete secondary containments 

The selection of the wall type depends on various factors, such as availability of real estate, clay 

materials, construction equipment, and skilled labour. Cost considerations include construction, 

operation, maintenance and decommissioning.  

The advantages and disadvantages of earthen dykes in comparison to concrete dykes will not be 

addressed within the scope of this paper.  



6. Deign of Precast Concrete Dyke; Simplified Approach  

Governing design load for dyke walls is hydrostatic pressure that imposes a triangular load 

distribution on the wall. Resultant force intersects at the 1/3
rd

 distance from the bottom of the wall 

and hence the bottom section of the wall is subjected to a large bending moment and lateral 

displacement. It is not economical to design a thicker wall to meet crack control parameters (limit 

wall slenderness) at maximum displacement. This paper proposes embedding a strong steel member 

(I-Section) at the bottom of the wall and a weak steel member (C-Section) at the top of the wall such 

that the combined wall experiences similar top and bottom lateral displacements. The intent is to 

design a wall that would produce uniform displacement across the wall height and hence the uniform 

bending stress.  

This section summarises design details for a 2.58 m high precast concrete wall panel dyke (Figure 4) 

required to contain 88,000 m
3
 outlined in the Section 5. It is assumed that the concrete wall panels 

are supported at every 6 m intervals. Design is based on the CSA Standard A23.4 (2004). 

Step 1: Select a trial wall thickness, reinforcements, support spacing to meet crack control parameter;  

Wall height;  

Wall thickness;  

Space between lateral supports;  

Main reinforcement – top (size and quantity);  

Main reinforcement – bottom (size and quantity);  

Transverse reinforcement – (size and quantity);  

Reinforcement cover;  

Strength of concrete and reinforcement steel;  

Steel and concrete resistance factors;  

Elastic modulus of steel 

Live load factor;  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 Cross-section of concrete wall panel. 
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Unit weight of water and concrete;  

 

 

Lateral force due to hydrostatic pressure;  

 

 

Bending moment due to hydrostatic pressure;  

 

Factored moment at Ultimate Limit State (ULS);  

 

Modulus of rupture (clause 8.6.4); 

 

Cracking Moment (clause 9.8.2.3); 

Where;  

 

 

Elastic modulus of concrete (clause 8.6.2.2); 

 

 

Moment capacity of concrete based on equivalent rectangular stress distribution for doubly reinforced 

concrete (clause 10.1.7);  

 

Distance to tension reinforcement; 

 

 

 

 

Crack control parameter (cl 10.6.1);  

 

          < = 25,000 N/mm for exterior exposure; 

 

 

Step 2: Assume a trial applied moment for concrete section, calculate effective moment of inertia and 

mid-span deflection of concrete at Serviceability Limit State (SLS); 

Trial bending moment of concrete at SLS;  

 

Effective moment of inertia at SLS (clause 9.8.2.3);  

 

 

 

Deflection of concrete at SLS (clause 9.8.2.2); 
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Check for slenderness ratio; 

Slenderness ratio (clause 9.8.5.3) > 360;  

 

 

Step 3: Select a C-Section for top steel and an I-Section for bottom steel with depths of sections 

equal to the trial wall thickness. Compute bending moments of top and bottom steel due to computed 

deflection in Step 2; 

Select C200x17 for top steel and W200x46 for bottom steel;  

Moment of inertia and moment capacities of selected sections are;  

 

 

 

 

Bending moments of top and bottom steel due to computed displacement (imposing displacement 

compatibility) at SLS are given by;  

 

 

 

 

 

 

Combined bending moment of the wall at SLS; 

 

 

 

The combined bending moment of the wall should exceed the bending moment due to hydrostatic 

pressure at SLS, which;  

 

Repeat Step 2 and Step 3 until the combined bending moment exceeds the applied bending moment 

at SLS, while satisfying the slenderness requirement. 

 

Note: If computed slenderness ratio is less than required slenderness, select higher strength for top 

and bottom steel or change thickness of wall and repeat the above steps. 

 

As seen above, the assumed bending moment of concrete in Step 2 satisfies both the slenderness 

requirement and required moment capacity at SLS.  
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Step 4: Increase the trial bending moment of concrete selected at Step 2 gradually. Repeat Step 2 and 

Step 3 until the combined bending moment of concrete and steel exceeds the factored applied 

moment. This is the design strength check at ultimate limit state; 

Trial bending moment of concrete at ULS;  

 

Effective moment of inertia at ULS (clause 9.8.2.3);  

 

Deflection of concrete at ULS (clause 9.8.2.2); 

 

Bending moments of top and bottom steel due to computed displacement (imposing displacement 

compatibility) at ULS are given by;  

 

 

 

 

Combined bending moment of the wall at ULS; 

 

 

 

The combined bending moment of the wall should exceed the applied factored bending moment due 

to hydrostatic pressure at ULS, which;  

 

Repeat Step 2 to Step 4 until the combined bending moment exceeds the applied factored bending 

moment at ULS. 

 

As seen above, the combined bending moment is exceeded the applied factored moment at ULS.  

 

 

Step 5: Check ratios of moment capacities of concrete and steel, and combined wall at ULS; 

 

Concrete bending strength ratio (<= 1); 

 

Top steel bending strength ratio (<= 1); 

 

Bottom steel bending strength ratio (<= 1); 

 

 

Combined wall bending strength ratio (<= 1); 

 

 

Step 6: Check the location of resultant shear force due to the maximum moment; 
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Compute by taking the first moment of force exerted by steel and concrete, about the bottom of the 

wall. The distance to the resultant shear force is 0.38 x wall height. The theoretical location of the 

resultant force due to hydrostatic pressure is at 1/3 of wall height.  

 

Step 7: Repeat Step 1 to Step 6 until concrete or steel strength ratio in Step 5 close to 1.0 for 

optimum deign, while bringing the location of resultant force exerted by combined wall close to 1/3 

of the wall height that ensures the uniform deformation and stress distribution across the wall height.  

 

 

7. Deign of Precast Concrete Dyke; 
Verification by Finite Element Analysis 

The concrete wall panel design described in the Section 7 was modelled using finite element mesh 

containing 1560 bi-linear shell elements. The embedded steel at top and bottom were modelled using 

the second order beam finite elements. Simply supported boundary conditions were considered at 

both ends of the wall.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Lateral displacement contours at SLS 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

Figure 5: Bending moment contours at SLS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Bending moment in concrete at mid span at SLS and ULS 

 

The lateral displacement and bending moment contours and bending moment in concrete at mid span 

are shown in Figures 5 and 6. 

 

The results of the proposed simplified method and finite element analysis are summarized in Table 1.  

 

 

 

 

 

 

 

 

 



Table 1: Summary of results  

 

  

Simplified 

Approach 

Finite Element 

Analysis 
Difference 

  SLS ULS SLS ULS SLS ULS 

Mid Span Lateral Deflection (mm)             

Top Steel 16.3 30.5 15.3 28.9 1.00 1.60 

Concrete 16.3 30.5 15.8 29.4 0.50 1.10 

Bottom Steel 16.3 30.5 17.0 31.3 -0.74 -0.80 

Average 16.3 30.5 16.0 29.9 0.3 0.6 

              

Bending Moment (kN m)             

Top Steel 11.8 21.9 11.1 20.9 0.73 1.00 

Concrete 95.4 124.3 94.9 124.3 0.50 0.00 

Bottom Steel 39.4 73.8 40.6 74.7 -1.20 -0.90 

Combined Wall 146.7 220.0 146.6 219.9 0.13 0.10 

 

As shown in the table, differences between average displacements and combined wall strengths are 

0.3 mm and 0.13 kN m for SLS and 0.6 mm and 0.10 kN m for ULS.  

 

 

8. Conclusion 

The differences in the results obtained from the prosed simplified method are negligible in 

comparison to the results obtained using finite element analysis. Therefore the simplified proposed 

method for design of concrete wall panel embedded in steel to deform uniformly across the wall 

height for hydrostatic loading is justified. Analysis of this problem is complex and this paper 

proposed a simplified method that involves several steps.  
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