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Abstract 

 
Field surveys were conducted on the eastern coastline of Sri Lanka to investigate which vegetation 

species are effective against a tsunami and to evaluate the effectiveness of existing Casuarina 

equisetifolia forests in tsunami mitigation. Open gaps in C. equisetifolia forests were identified as a 

disadvantage, and introduction of a new vegetation belt in front of the existing C. equisetifolia forest is 

proposed to reduce the disadvantages of the open gap. A numerical model based on two-dimensional 

nonlinear long-wave equations was applied to explain the present situation of open gaps in C. 

equisetifolia forests, and to evaluate the effectiveness of combined vegetation system. The results of 

the numerical simulation for existing conditions of C. equisetifolia forests revealed that the tsunami 

force ratio (R = tsunami force with vegetation/tsunami force without vegetation) was 1.4 at the gap 

exit. The species selected for the front vegetation layers were Pandanus odoratissimus. A numerical 

simulation of the modified system revealed that R was reduced to 0.7 in the combined P. odoratissimus 

and C. equisetifolia system. The optimal width of P. odoratissimus (W1) calculated from the numerical 

simulation was W1=10 m. Establishment of a new front vegetation layer except for open gaps that are 

essential, such as access roads to the beach, is proposed.    
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1. Introduction 
 

The Indian Ocean tsunami on 26 December 2004 caused destruction of life, property, and massive 

damage to the coastal ecosystem. The damage occurred mainly in Indonesia, Sri Lanka, Thailand, and 

India, with innumerable injured and hundreds of thousands of destroyed facilities and life (Kathiresan 

and Rajendran, 2005). Sri Lanka had never experienced damage on such a large scale. About two-thirds 

of Sri Lanka, especially the western, southern, and eastern coast lines, were severely damaged 

(Wijetunge, 2005). These damages have highlighted the urgent need to develop methods to mitigate 

tsunamis and other natural disasters in coastal regions. Coastal forests can function as an alternative 

solution for mitigating tsunami damage because establishment of a hard infrastructure for tsunami 

mitigation is not economical especially for developing countries. 

 
Planted Casuarina equisetifolia forests were observed in many investigated sites for tsunami mitigation 

during the field survey. The disadvantages of coastal forests were also revealed. These include open 

gaps in a forest due to, for example, a road, river, gap between two forests, or difference in elevation. A 

gap in the coastal zone is reported to increase risks and potential damage because the water flow 

through the gaps is accelerated as it moves into the constriction. Many previous researchers have 

examined the shortcomings of open gaps by field investigations (Mascarenhas and Jayakumar, 2008; 

Fernando et al., 2008), numerical simulations (Tanimoto et al., 2008; Nandasena et al., 2008; Thuy et 

al., 2009, 2010), and laboratory experiments (Fernando et al., 2008; Thuy et al., 2009, 2010). However, 

none of the above studies discussed the disadvantages of open gaps in existing C. equisetifolia forests 

by analyzing the variation of maximum tsunami force. 

 

Therefore, the objectives of the present study were to study the (1) disadvantages of open gaps, and (2) 

effectiveness of modified vegetation systems for reducing the disadvantages of existing C. equisetifolia 

forests.   

 

2.  Materials and methods 
 

2.1 Site description 
Field surveys of coastal vegetation were conducted on the eastern coastline of Sri Lanka. The 

vegetation was observed along the coastal belt from Kalmunai to Passekudah including eleven 

locations (about 72 km, 24-27 May 2010) and from Passekudah to Kokkilai including nineteen 

locations (about 160 km, 14-18 December 2010) (Figure 1). The areas were mainly covered with C. 

equisetifolia forests that established under the various projects intended to protect people, the 

infrastructure and the environment from future tsunami hazards. The tree and forests characteristics, 

such as tree height (H), trunk diameter at breast height, tree density, forests length (L), forests width 

(W), the spacing between the trees in the shore (l1) and cross-shore directions (l2), and the distance from 

the forest to the sea were measured during the field survey. In addition, the tsunami water depth and 

flow velocity were obtained from the available data. 



 
Figure 1: The locations of the investigation sites 

2.2 Estimation of drag force coefficient using tree characteristics    
The physical characteristics of coastal vegetation were considered by means of drag force of trees along 

a width of W (m) and a length of vegetation of 1 (m). The following equation shows the cumulative drag 

force acting on the forest (Tanaka et al., 2007).  
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where Dcum is the cumulative drag force of trees with a width of W (m) and a length of 1(m), n
’
 is the 

number of trees in a vegetation width of W (m) and length of 1 (m), d
’
 is the reference tree trunk 

diameter at 1.2 m above the ground (cm), α and β are additional coefficients representing the effects of 

branches and leaves, respectively, on the drag force Cd is the drag coefficient, ρ is the density of salt 

water (kg/m
3
), U is the depth-average velocity (m/s), and h

’
 is the tsunami depth (m). Coefficients α and 

β were chosen according to the average tree height.  

 

Equations 2, 3, and 4 define the vertical vegetation structure, Cd-all, effective vegetation thickness, dNall 

(cm/ (vegetation width x 1 m
2
)), and vegetation thickness per unit area, dNu (cm/unit vegetation area 

m
2
), as follows (Tanaka et al., 2007).  
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where l is the average space between the trees (m). Equations 2, 3, and 4 are related to the drag force in 

Equation 1. Cd-all describes the characteristics of the tree itself, dNall describes the characteristics 

including the effects of the tree structure αβ in the W (m) x 1 (m) vegetation, and dNu describes the 

characteristics of a unit vegetation area.    

 

2.3 Numerical simulation analysis 
A numerical simulation was carried out to investigate the effects of an open gap, such as a road, in C. 

equisetifolia forests on tsunami mitigation. The present situation of a sample forest was investigated 

using the numerical simulation, and the disadvantages associated with the open gaps were identified. 

Then, the existing conditions of C. equisetifolia forests were modified by introducing a front vegetation 

layer to reduce the disadvantages. Finally, a numerical simulation was conducted to determine the 

effectiveness of the modified system.  

 

2.4 Governing equations 
The governing equations were two-dimensional nonlinear long-wave equations. The governing 

equations used for the numerical simulation were the continuity equation (5), the momentum equation 

in X and Y directions (6) and (7), and the equation for drag force (8).  
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where Qx and Qy are the discharge flux in x and y directions respectively, t is the time, d the total water 

depth (d = h+δ), h the local still water depth, δ the water surface elevation, g the gravitational 

acceleration, ρ the density of salt water, n the Manning roughness coefficient, γ the tree density 

(number of trees/m
2
), F the drag force on trees, A the projected area of trees facing the tsunami, and U 

the depth-average velocity. To evaluate the tsunami reduction by a coastal forest, the variations of 

tsunami force behind the forest was examined with input data including, the topography, tsunami 

conditions, and different tree and forest characteristics. The topographical condition used for the 

tsunami numerical simulation is shown in Fig. 2. 



 
Figure 2. The topographical conditions used for the numerical simulation 

 

2.5 Conditions of numerical simulation for existing and modified forest 

conditions 
A numerical simulation was carried out on a C. equisetifolia forest at the Batticaloa site (length = 600 m 

and width = 60 m) to identify the disadvantages of open gaps. The existing condition of C. equisetifolia 

forests was modified to decrease the disadvantages of the open gaps. It also aimed to improve the 

effectiveness of the present C. equisetifolia forests. The modification was done by establishing a 

vegetation layer in front of the existing C. equisetifolia forest. Fig. 3 (b) shows a schematic view of the 

front vegetation layer. Variations of the tsunami force ratio (R) were assessed at the middle of the open 

gap exit (point B in Fig. 3 (b) in determining W1). 
 

Force with vegetation
Tsunami force ratio ( ) = 

Force without vegetation
R  

 



 
 

Figure 3. Schematic views of (a) exiting condition, (b) modified system 

 

3.  Results and discussions 
 

3.1 Present situation and problems associated with planted C. 

equisetifolia forests 
C. equisetifolia forests at investigated sites were established by various organizations including NGOs 

and government institutes before and after the Indian Ocean tsunami in 2004. Most of the forests 

established before the Indian Ocean tsunami in 2004 failed to protect people and infrastructures behind 

the forests. Therefore, it can be assumed that such planting projects were carried out without 

considering the scientific guidelines as well as socioeconomic criteria. The forests that were 

established after 2004 tsunami also failed to take similar characteristics (i.e., forest density, forest 

length and width, open gap width, etc.) of matured forests into account, and hence, it can be assumed 

that the newly established forests also will not be effective against future tsunami events. The demerits 

of coastal forests, such as an open gap in a forest (i.e., a road, a river, a gap between two forests, etc.), 

were identified in many of the investigated C. equisetifolia forests. Mascarenhas and Jayakumar (2008) 

reported that roads perpendicular to the beach in a coastal forest served as pathways for a tsunami to 

travel inland in many places in Tamil Nadu, India, during the Indian Ocean tsunami in 2004. The 

presence of an open gap in a forest could intensify the force of the tsunami waves by channeling them 

into the gap (Tanimoto et al., 2008; Tanaka, 2009; Thuy et al., 2009).  Fig. 4 (a) and (b) show examples 

of open gaps in a C. equisetifolia forest in investigated areas.  



 
Figure 4. Examples of an open gap at investigated sites 

 

A numerical simulation was carried out to identify the disadvantages of an open gap in an existing C. 

equisetifolia forest. The model was run for the without-vegetation condition first and then for the C. 

equisetifolia forest condition (Fig. 3(a)). Fig. 5(a) and (b) show the x-y distribution of the maximum 

tsunami force (Fmax) (N) for a no-vegetation condition and behind the forest for with-vegetation 

condition, respectively.  

 
Figure 5. x-y distribution of the maximum tsunami force for (a) no-vegetation condition, (a) behind 

the forest for with-vegetation condition 

The potential tsunami force is defined as the total drag force on a virtual high column with the unit 

width and unit drag coefficient. The location of the shoreline was along the y-axis of both figures (x = 

20000), and the difference between the values of the x-axis and the shoreline (x = 20000) shows the 

distance from the shoreline to the inland. The situation at the gap and gap exit was critical. The 

maximum tsunami force varied from 18,000 to 20,000 N inside the gap, and it increased to about 22,000 

N at the gap exit (between 100–150 m from the shoreline). The variation of R at the gap exit and along 

the center line of the forest is shown in Fig. 5(b). The values of R along the gap exit were greater than 

the values of R at parallel locations along the center line of the forest. The highest value of R was 1.4, 

and it was seen at the exit of the gap (point A in Fig 3(a)). Therefore, the results of Fig. 5 reveal that the 

presence of an open gap in a coastal forest amplified the tsunami force even more than the 



no-vegetation condition. A similar result was found by Thuy et al. (2009) where the maximum velocity 

at the gap exit was 1.7 times than the maximum velocity without a coastal forest in their simulation 

condition. These results emphasize the importance of developing methods to minimize the tsunami 

force at the gap exit, at least to the no-vegetation condition. In the present study, we propose a new 

vegetation layer at the front of the existing C. equisetifolia forest to minimize the amplification of 

tsunami force through the open gap. In the improved planting condition, Pandanus odoratissimus as the 

front line could be used to reduce the disadvantages of open gaps. The optimum widths of P. 

odoratissimus (W1) were estimated by the numerical simulation as described below.     

 

3.2 Selection of effective widths of P. odoratissimus    
The present situation of planted C. equisetifolia forests was improved by introducing a front vegetation 

layer to reduce the disadvantages of open gaps. The results of the numerical simulations conducted to 

determine the optimum value of W1 is shown in Fig. 6.   

 

 
Figure 6. Variation of R for different W1 values 

 

The figures describe the variation of R with b/a (b=forest length along a shoreline, a=forest width to 

streamwise direction) for different values of W1 (W1 = 10, 20, and 30 m). The R in Fig. 6 was gradually 

decreased to b/a=6 because increasing the b/a creates a longer effective forest length perpendicular to 

the tsunami direction. The R at the gap exit of the existing condition was 1.4, but it was reduced to 

around 0.6–0.7 by introducing P. odoratissimus as the front vegetation layer. The selection criterion for 

the optimum value of W1 was that R should be less than one. According to Fig. 6, R was less than one in 

all the cases, and it might be decreased further if the width of P. odoratissimus (W1) was increased still 

further. Nevertheless, the establishment of a thick P. odoratissimus layer as the front line would not be 

effective from economical and social points of views. An economic point includes high cost spend for 

establishment of a thick vegetation layer and the social points include illegal settlement and illegal 

activities within the shelterbelt. Consequently, W1=10 m was selected for proposed front vegetation 

layer. The density of P. odoratissimus was selected to equal the average tree density of existing P. 

odoratissimus forests (0.4 trees/m
2
) at the investigated sites. Many of the open gaps of the existing C. 

equisetifolia forests serve no purpose, but some of them are access roads to the beach. Therefore, the 

proposed modification should exclude the open gaps that serve essential purposes.    

 

3.3 Effectiveness of combined vegetation system on tsunami mitigation 



The protective functions of combined vegetation systems have been studied in detail by many 

researchers using field investigations (Tanaka et al., 2007, 2010), numerical simulations (Tanaka et al., 

2009), and laboratory experiments (Tanaka et al., 2009). All the above studies reported that a combined 

system can play an effective role in mitigating tsunami damage. Tanaka et al. (2007) conducted a field 

investigation in Sri Lanka after the Indian Ocean tsunami in 2004 and found that P. odoratissimus and 

C. equisetifolia were mixed for a distance of about 20 m at the Kalutara site. The tsunami height 60 m 

inland from the coast was 0.6 m, and the houses located within this area were not as heavily damaged 

because the tsunami height was low compared to its original value. In Sri Lanka, there are many newly 

established coastal vegetation planting projects for tsunami disaster mitigation. Tanaka et al. (2010) 

investigated the effectiveness of these new establishments on the southern and western coastlines of Sri 

Lanka and found that many of them consisted of combined vegetation projects.  

 

4.  Conclusions      
 
Field surveys were conducted on the eastern coastline of Sri Lanka to investigate the present condition 

and effectiveness of existing coastal vegetation barriers against a tsunami. The conditions of existing C. 

equisetifolia forests were analyzed, and it was found that the open gaps in the forests created risk zones, 

especially at the gap exits. A numerical simulation was conducted to investigate the present condition 

with regards to open gaps in the forests, and it was found that the maximum tsunami force was 

amplified greatly by open gaps. R was calculated as 1.4 at the gap exit in comparison with the 

no-vegetation condition. This study proposed introducing a vegetation layer in front of the C. 

equisetifolia forest to reduce the disadvantages. P. odoratissimus was selected as the front vegetation 

layer. The results of a numerical simulation carried out to determine the combined effects of C. 

equisetifolia and P. odoratissimus demonstrated that the R at the gap exit was 0.6–0.7, which is a 

substantial reduction from 1.4. Therefore, P. odoratissimus as the front vegetation layer was proposed 

to improve the present situation of the C. equisetifolia forest. The results of a numerical simulation 

conducted to determine the optimal width of P. odoratissimus (W1) gaps revealed that the best W1=10 m 

considering economical and social points of views. The modification should be made except in the 

open gaps that are used for essential purposes such as roads to access the beach.                                 
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