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Abstract 
 

Keeping track of underground utilities through maps or real physical signs is essential for their 

maintenance and quick repairs, whenever required, without causing much obstruction to day to 

day life. It is not uncommon that maps are misplaced or real physical signs are destroyed. In 

such situations, digging and excavation becomes unavoidable during repair works. Ground 

penetrating radar (GPR) is one of the non invasive methods which now are being applied for 

detection, ranging and characterization of subsurface buried objects. GPR employs radar pulses, 

sends them into ground, then get back scattered energy from dielectric discontinuities in the 

subsurface. Frequency of antennae determine their capacity to detect and resolve the buried 

objects (depth of penetration is worth a mention). Hence, 400MHz and 200MHz frequency 

antennae are generally used for utility mapping at shallow depths up to 4 to 5 meters.  

GPR response to buried objects is very much dependent upon buried object locations, their 

constituents, their surroundings and antennae properties. It is very crucial to have a database of 

GPR responses corresponding to various influencing factors over their ranges of variability 

either by experimental or simulation studies. In the present work, an attempt has been made to 

generate data so as to know the dependence of GPR responses on changes in the influencing 

factors. Simulations have been carried out by using exclusive GPR simulation software called 

GPRMax.  Several typical ground scenarios have been simulated and effects of various object, 

medium and antennae parameters on response of GPR have been studied and relationships have 

been established between them using response surface method (RSM). Finally, real GPR data 

has been compared with simulated data and interpreted. 
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1. Introduction 

Construction activity in urban areas, particularly, infrastructure development related work, has 

now reached a frenetic pace in most metropolises. Mumbai is no exception. Inevitably, any 

excavation in developed and densely populated areas requires information regarding buried 

utilities. Such information is frequently not available even in new construction sites. Accidental 

damage to utilities like pipes and cables is common, and at times, of dangerous consequences. 

The need for a priori knowledge of the buried objects cannot be overemphasized.  

Detection, ranging and characterization of the utilities are the three integral components of 

gathering information about them. Ground penetrating radar (GPR) offers an unique 

opportunity to gather this information. The ability of a Ground penetrating radar to respond to 

electromagnetic discontinuities in the ground makes it possible to detect metallic/ non metallic 

buried objects, subsurface layers, underground void formations etc. Therefore, GPRs have been 

very useful in utility mapping, in particular. They also find application in geotechnical, 

geological, archaeological, structural and environmental investigations and in mine detection, 

mass burial site mapping and so on.  

A GPR sends a pulse of known central frequency into the ground and picks up the waves 

backscattered from the buried objects and the contrasting subsurface layers. The resulting 

response is presented in the form of a radargram, which depicts the variation of amplitude of 

reflected signals with (traverse) distance and depth or time of travel of pulse. The amplitudes of 

the returned signals and patterns in them depend on many factors like (a) antenna parameters 

such as central frequency and polarization, (b) host medium parameters like dielectric 

permittivity and (c) object parameters like shape and size and relative dielectric permittivity 

and conductivity. Interpretation of the radargram requires an understanding of the influence of 

these parameters. Conducting laboratory or full scale field studies under controlled conditions 

is an obvious, but expensive, solution. An attractive alternative is the numerical simulation of 

the propagation of the electromagnetic waves into the medium containing buried objects using 

Finite Difference Time Domain (FDTD) technique since computing resources are now easily 

available. This could, however, be a time-consuming computational process.  Considerable 

simplification can be achieved by using Response surface method (RSM), which fits a 

polynomial to a relationship between input variables and responses of any experiment or 

process with limited number of outputs. An investigation of the use of simulation and RSM is 

the subject matter of the present study. 

1.1 Significant response governing factors 

In order to carry out simulations, it is necessary to identify the significant parameters that have 

an influence on the output response. RSM helps to identify the significant inputs. When the 

actual dependence of a system response on its constituent variables is not known but the 

governing equations are, then RSM helps to establish an equivalent relationship. RSM is a 



statistical technique (Zangeneh et al., 2002; Myers and Montgomery, 2006), which  helps to 

replace the true response of a system or a process using an equivalent polynomial surface. 

Let a general true response f be represented by Eq. (1), 
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where, 1 to k  are the actual variables on which a system depends and γ is a term representing 

sources of variability not accounted for in f and treated as a statistical error.  

RSM builds an equivalent polynomial surface using least square regression analysis to 

minimize this error. 

The equivalent second-order polynomial, involving two variables/factors, is given as shown in 

Eq. (2):   
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where xi  are called coded variables, which are transformed values of the actual variables ξi , to 

the domain of [-1,1] and βij are called regression coefficients. This can be easily extended to the 

case of several variables. In building this surface, the factors are treated as random variables 

and three levels ( mean and ± standard deviation) are considered. 

The three - level, three - factor experiment uses 27 function values as illustrated in Fig. 1 

(http://solutions.knovelblogs.com). The coefficients can be obtained by solving for β using Eq. 

(3): 

(3)                                                                                                                                               xy                                            

 

where β is the column vector of regression coefficients, and  γ is the column vector containing 

the random errors. Then, substituting the β values in Eq. (2), we get the response surface and 

the relative influence of the variables on the ultimate response. 

 

 



Figure 1: Levels of factors and analysis domain for a 3 - factor experiment 

(http://solutions.knovelblogs.com).  

1.2 Simulation of GPR Responses by FDTD 

The foregoing shows that useful relationships can be established between input variables and 

output response through a series of simulations using a specified random set of parameter 

values. These simulations mimic the propagation of electromagnetic waves in the medium. The 

travel of GPR pulses is an example of propagation of electromagnetic waves through a medium 

and is governed by Maxwell’s equations (4) to (7) and constitutive equations (8) and (9):     
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where, 

E = electric field in volt/m, D = electric displacement field in coulombs/square meter, H = 

magnetic field in ampere/m,   = divergence operator in per meter, B is magnetic flux density 

in webers per square meter, (δ/ δt) = partial derivative w.r.t. time, J = total current density in 

amperes per square meter, M = magnetic current density in volts per square meter, ρe = free 

charge density in coulombs per cubic meter, ρm = magnetic charge density in webers per cubic 

meter, ε = permittivity and µ  = permeability. 

Numerical simulation of electromagnetic wave propagation using FDTD involves solution of 

the above equations by discretization of the medium into a spatial grid (Diamanti, 2008). Once 

the medium is discretized, electric and magnetic field components are placed at these discrete 

positions in space and Maxwell’s equations are solved in time at discrete time instants. To 

solve these equations, first, the Maxwell’s curl equations are converted to finite scalar 

derivatives in space and time. Simulation of the phenomenon of propagation is achieved using a 

forward difference time marching algorithm that computes the field values at a future time 

instant from the values of a past time instant.  

There are simulation tools available for simulation of electromagnetics in Elsherbeni and Demir 

(2009). But, a special purpose FDTD tool for GPR data, GprMax, is available in  

(www.gprmax.org. ). In  Giannopoulos (2005), working of GprMax is demonstrated with a few 

examples. A-scan simulation above lossy and dispersive soils is described in Uduwawala et al 

(2005). The frequency responses of GPR using A-scan and B-scan simulations are discussed in 

Oguz and Gurel (2002). Effects of surface roughness and medium in- homogeneity are 

examined in Uduwawala et al (2005) and Oguz and Gurel (2002). A demonstration of pavement 



modeling and pavement layers thickness calculations through A-scan simulations is presented 

by Zhang et al (2010). In the present work, GprMaxV2.0, which employs FDTD method, is 

used for B-scan simulations to understand the fundamental behavior of GPR. Parameters like 

medium relative dielectric permittivity, antenna frequency, pipe diameter and material have 

been varied to understand GPR response. Further, in the present work, RSM has been used 

to model the GPR responses (amplitude) for the problems studied. 

 

1.3 Utility Detection and Role of Simulation 

The importance of simulation studies lies in the fact that detection of buried pipes using GPR 

under real field situations is still an active area of research. There are several commercial 

companies which use proprietary software and offer a variety of GPR services 

(http://www.geophysical.com; http:www.nyld.com/index.asp). But, success depends on a 

number of factors such as host medium-pipe material combinations, depth, size and number of 

pipes and frequency of antennae, amongst others. Turkel et al. (2009) have given an excellent 

comparison of the GPR technique with electromagnetic method based on an actual case study. 

They have also highlighted the possibility of erroneous detection using GPR. But, another 

important dimension of the problem is the determination of depth, diameter and dielectric 

permittivity of the material of the buried pipes. Notable contributions to this aspect are those of 

Shihab and Al-Nuaimy (2005), Windsor et al. (2005) and Umar and Al-Nuaimy(2009). This is 

an area where a database of typical responses of pipes under a variety of conditions coulc help. 

Simulation can play a vital role in development of the database. This has been the motivation 

for the present study.  

1.4 Scope and Objectives 

Detection, ranging and characterization require a fundamental understanding of the effect of 

various parameters on which GPR response depends. The scope of the present study is to carry 

out FDTD simulations and establish relations through RSM which will help interpret real 

radargrams. 

The objectives of the present study are: 

(i) to relate, through FDTD and RSM, amplitude of GPR response to factors which influence it  

(ii) to study the influence of significant parameters with a view to interpret real radargrams.  

For this purpose, several simulation studies were carried out. Real GPR data was also collected 

through field work at selected locations. These were locations where buried pipes were known 

to be present and were accessible in order to ascertain their geometrical parameters. 

http://www.geophysical.com/


2. Simulation of Fundamental Behaviour of GPR 

Simulations are carried out with a view to understand the implication of influence of various 

parameters on detection, ranging and characterization. Detection refers to identifying the 

presence of a buried utility. It is well known that a buried cylindrical object produces a 

hyperbola in a radargram. Therefore, a problem of a buried pipe has been considered and the 

visibility, location and size of hyperbolae have been used to evaluate the effects of main 

influencing parameters i.e. host medium relative dielectric permittivity, antenna frequency, size 

and material of pipe. Ranging refers to the determination of the depth of the buried object. 

Effect of medium relative dielectric permittivity on depth has been studied through simulation. 

Characterization refers to identification of the material of the object. So, the material type, as 

defined by the object relative dielectric permittivity has been varied in simulation studies. 

Further,  RSM is used to build an equivalent polynomial response equation of a desired degree. 

In the following section, such RSM based simulations have been described for 3 and 4 Factorial 

problems / experiments. 

3. GPR Response (Amplitude) as a Function of its 
Influencing Factors 

An attempt has been made here to systematically study problems of varying complexity to bring 

out significant effects. 

3.1 The four parameter problem 

A typical problem of a buried pipe in soil is analysed first. The geometry of the media ( air and 

soil) and the object are shown in Fig. 2. The response to GPR in such an object-medium 

combination would depend essentially on pipe diameter (x1), object relative dielectric 

permittivity (x2), soil relative dielectric permittivity (x3) and antenna frequency (x4). The 

medium is assumed to be homogeneous, dry and of conductivity = 0.001S/m.  

 

 

 

 

 

Figure 2: Problem statement for  Four parameter and Three parameter problems 



The values selected for input factors based on the experiences during real GPR data collections 

are: x1 = 0.64m, 0.8m, 0.96m; x2 = 6, 10, 14; x3 = 2,4,6; x4 = 200MHz, 400MHz,600MHz 

Being a three – level, four factorial experiment, 81 combinations of the random variables are 

used and radargrams are generated through FDTD.  The amplitude at the crown of the 

hyperbola is the response parameter.  Amplitude (A) at the crown of the hyperbola, expressed 

as a 2
nd

 order polynomial function  of influencing factors is found to be as shown in Eq.(10): 

A = +1.32031 – 4.85821x1 - 0.057857x2 + 0.20482x3 +6.55065E-04x4  + 0.20234x1x2  - 

0.16025x1x3 +2.45887E-003x1x4 + 0.021273x2x3 +7.42951E-06x2x4  -1.26282E-04x3x4 

+2.60122x1
2 
-5.61073E-03x2

2
  -0.034176x3

2
 -2.02638E-006x4

2
                          (10)                           

The standard errors associated with the coefficients are, respectively, 0.052, 0.021, 0.021, 

0.021,0.021, 0.026, 0.026, 0.026, 0.026, 0.026, 0.026, 0.037, 0.037, 0.037 and 0.037. ANOVA 

shows that x1, x2, x3, x4, x1x2 and x1x3 are the significant factors and that, effect of frequency on 

the amplitude is very less compared to effect of pipe diameter, object relative dielectric 

permittivity and soil relative dielectric permittivity. 

3.2 The three parameter problem 

Hence, to bring out the effects of the significant parameters on the response, frequency is now 

kept constant at 200 MHz and a 3 - factorial problem i.e. three influencing factors/ input 

variables with three levels is analysed. The problem geometry is same as  in Fig. 2. The three 

factors chosen are pipe diameter, soil relative dielectric permittivity and object relative 

dielectric permittivity and response is the amplitude at the crown of the hyperbola. Using RSM, 

amplitude has been expressed as polynomial function of pipe diameter (x1), object relative 

dielectric permittivity (x2) and soil relative dielectric permittivity (x3) at ideal conditions 

(conductivity = 0.001S/m, medium is homogeneous, dry and of suitable frequency for required 

penetration). The input factors are, as before, x1 = 0.64m, 0.8m, 0.96m; x2 = 6, 10, 14; x3 = 2,4,6. 

Simulations have been carried out for 27 combinations and corresponding amplitudes at the 

crown of the hyperbola have been computed and used as responses. The resulting relationship 

between Amplitude and the three factors is expressed as a 2
nd

 order polynomial function  of 

influencing factors in Eq. (11): 

A = +1.25925 -2.38889x1 - 0.067993x2  - 0.11917x3  + 0.20326 x1x2 + 6.92448E-003x1x3 + 

0.013273x2x3 +    0.87331x1
2    

 - 3.75938E-003x2
2
 - 5.31708E-003x3

2 
                       (11) 

The standard errors associated with the coefficients are, respectively, 0.020, 0.009, 0.009, 

0.009, 0.011, 0.011, 0.011, 0.016, 0.016 and 0.016. ANOVA (ANalysis Of VAriance) shows 

that x1, x2, x3, x1x2, x2x3 and x2
2 

are the significant factors. This further confirms the importance 

of the object and medium permittivties. The amplitude variation with these parameters is shown 

in Fig. 3. 



 

 

 

 

 

 

 

Figure 3: Variation of amplitude with medium and object relative  permittivities  

at pipe dia = 0.8m 

 

On the basis of these simulations, effect of medium dielectric permittivity and pipe material 

dielectric permittivity were chosen for further investigation (Sections 3.3 to 3.6). 

3.3 Effect of host medium relative dielectric permittivity 

In order to understand the importance of range / depth of object on GPR response, further 

simulations have been done using the following problem geometry (Fig. 4). Since, host medium 

relative dielectric permittivity has a significant effect on GPR data, it has been varied over a 

wide range. For this, three different pipe-cover combinations with different dielectric 

permittivities were identified . They were:  concrete pipe –concrete or paver block cover (εr = 

4), metal pipe- concrete or paver block cover (εr = 15) and concrete pipe – wet soil (εr = 30). 

Fig. 5(a) to Fig. 5(c) show simulated results at host medium relative dielectric permittivities = 

4, 15and 30 at a frequency of 200 MHz. Similar results for 400 MHz are presented in Fig. 6(a) 

to Fig. 6(c).  

 

 

 

 

                                

Figure 4: Problem statement for effect of medium dielectric permittivity 



 

 

 

 

    (a)  εr = 4                                     (b)εr = 15                                 (c) εr = 30       

Figure 5: Effect of medium dielectric permittivity at 200 MHz 

 

 

 

 

 

 

 

 

 

    (a)  εr = 4                                     (b)εr = 15                                 (c) εr = 30                                          

Figure 6: Effect of medium dielectric permittivity at 400 MHz 

3.4 Comparison with real GPR Data 

These are compared with real GPR data collected at 200 MHz and different input relative 

dielectric permittivities at a site where pipe was buried below paver blocks (Fig. 7(a) to 7(d)). 

 

 

 

 

(a)                              (b)      (c)                  (d) 

Figure 7: Effect of  input relative dielectric permittivities (a) 4, (b) 12, (c) 18 and (d) 30 

Any comparison with real GPR data has its inherent difficulties since certain antenna details 

required for simulation are manufacturer’s proprietary confidential information. Nevertheless, a 

fairly good qualitative comparison is possible. It must be noted that in real GPR data relative 

dielectric permittivity of  the medium is a user-defined input and could be different from the 

actual field value. 

The amplitude values increase with increase in medium relative dielectric permittivity in both 

real and simulated data.  The hyperbola appears at progressively greater depths with increase in 



medium relative dielectric permittivity in both real and simulated data. Accuracy of ranging, 

therefore, depends on the influence of medium relative dielectric permittivity. Simulation helps 

to capture the effect of medium relative dielectric permittivity on shape of hyperbola 

3.5 Effect of pipe materials 

Identifying the type of material of the buried object is another important requirement. The usual 

material types are metal, concrete and PVC. It is a difficult task since the object dielectric 

permittivity values for different materials could vary within narrow limits and the ranges may 

overlap. The problem statement for effect of different pipe materials is given in Fig. 8(a). Here, 

from left to right, a void, a metal pipe, a concrete water-filled pipe have been depicted. The 

simulated results are presented in Fig. 8(b).   

 

 

 

 

                                  (a)                                                                 (b) 

Figure 8: Effect of material type (a) problem statement (b) simulation results 

 

Fig. 9(a) shows GPR data collected at 200MHz , over concrete (pipe 1) and metal (pipe 2) pipes 

buried under paver blocks and Fig.9(b), over two concrete pipes buried in concrete.  

 

 

 

 

 

 

 

(a)                                                  (b) 

Figure  9: GPR data collected over: a) Concrete and Metal pipes  b) Two concrete pipes 

Simulation shows: (i) the hyperbola due to a void has multiple reflections and there is a (-) ve 

cycle in the beginning (ii) the hyperbola due to metal cylinder has no multiple reflections and 

has a positive cycle in the beginning. Amplitude values are highest and (iii) the hyperbola due 

to water filled pipe has no multiple reflections. It also has a (+) ve cycle in the beginning due to 

higher relative dielectric permittivity of water. Amplitude values are not high as compared to 

hyperbola of metal pipe. 



3.6 Comparison with GPR data on actual pipes 

The hyperbola due to a void has multiple reflections. In Fig. 9(a), Pipe1 is a concrete pipe filled 

with air. As indicated by simulation, it has multiple reflections.  In comparison, Pipe 2, which is 

of metal, does not show multiple reflections in real as well as simulated data. Water filled pipes 

have no multiple reflections as indicated in simulation.  

4 Conclusions 

On the basis of above studies, following conclusions may be drawn. 

1) GPR response as a function of influencing factors , as obtained from 3 and 4 factor 

experiments show: 

i) Consideration of frequency as an additional parameter shows that increasing 

frequency increases the amplitude marginally. 

ii) The amplitude depends on diameter and relative dielectric permittivity of the 

object rather than on soil relative dielectric permittivity 

2) In general, simulation helps to gain a better understanding of the real GPR response. In 

both the simulated and real GPR data: 

i) The depth of the hyperbola is increasing with increase in relative dielectric 

permittivity;  

ii) the size however decreases in simulated data while it remains unchanged in real 

data due to the fixed relative dielectric permittivity of the medium  

3) RSM is an effective tool to represent the unknown relationship of GPR response with 

the various influencing parameters. It could be used for predicting change patterns in 

amplitudes due to changes in significant influencing parameters. 

5 References 

Diamanti N, Giannopoulos A and Forde M C (2008) “Numerical modelling and experimental 

verification of GPR to investigate ring separation in brick masonry arch bridges”,  NDT & E 

International, 41:5, 354-363. 

 

Elsherbeni A and Demir V (2009) “The Finite Difference Time-Domain Method for 

Electromagnetics with MATLAB Simulations”, Scitech Publishing Inc., 1st Ed., pp. 1-22,  

 

Giannopoulos A (2005) “Modelling ground penetrating radar by GprMax”, Construction and 

Building Materials 19: 755–762. 

 



Larsen P V, “Regression and Analysis of Variance”, Master of Applied Statistics, 

(http://statmaster.sdu.dk/courses/st111/module03/index.html), 2006. 

 

Myers, R H and Montgomery, D. C.  “Response surface methodology process and product 

optimization using design experiments”, John Wiley & Sons, New York, 2006.  

 

Oguz U and Gurel L (2002) “Frequency responses of ground penetrating radars operating over 

highly lossy grounds”. IEEE trans. Geosc. and Rem Sens,  40:6, 1385 – 1394. 

Shihab S and Al-Nuaimy W (2005). “Radius estimation for cylindrical objects detected by 

ground penetrating radar”, Subsurf. Sens. Technol. Appl., 6 : 2, 151-166.  

Turkel V, Yalcinkaya  M and Akbas H (2009) “ Detection methods of underground pipelines”, 

Proc. 24
th 

World Gas Conference, Argentina, 1-12.  (http://www.igu.org/ html/wgc2009/ 

papers/ docs/wgcFinal00694.pdf) 

Uduwawala M, Norgren M, Fuks P and Gunawardena A (2005)  “A complete FDTD simulation 

of a real GPR antenna system operating above lossy and dispersive grounds, Progress In 

Electromagnetics Research, PIER 50, 209–229. 

Umar K. S and Al-Nuaimy W, “Angle-based 3D line detection and its application for radius 

correction of underground utilities in GPR data”, in 4
th
 International workshop of Advanced 

Ground Penetrating Radar, IWAGPR, University of Granada, Granada. 

Windsor C.G., Capineri L and Falorni P (2005) “The Estimation of buried pipe diameteres by 

generalized hough transfrom of radar data”, Progress in Electromagnetics Research 

Symposium, Hangzhou, China, 345-349. 

 

Zangeneh N, Azizian A, Lye L and Popescu R (2002). “Application of response surface 

methodology in numerical geotechnical analysis”. 55th Canadian Society for Geotechnical 

Analysis, Hamilton, Ontario. 

 

Zhang J, Guo Y and Li J (2010) “FDTD simulation of GPR electromagnetic wave”. 

GeoShanghai-2010 International Conference, Geotechnical publication No. 201, pp.225-233, 

2010. 

 

www.gprmax.org (Last accessed on 30/07/12). 

 

http://solutions.knovelblogs.com (Last accessed on 30/07/12). 

 

http://www.geophysical.com (Last accessed on 06/11/12). 

 

http:www.nyld.com/index.asp (Last accessed on 06/11/12). 

 

Acknowledgements 

The Authors are grateful to the authorities in charge of the study locations for the permission to 

carry out the GPR studies at these locations. Authors also thank the anonymous reviewer for his 

critical comments which have strengthened the paper. 

http://statmaster.sdu.dk/courses/st111/module03/index.html
http://www.igu.org/
http://www.geophysical.com/

