SIMPLE MONTE CARLO SIMULATION USING
MATLAB

M. Indralingam
Department of Mathematics
University of Moratuwa

SIMPLE MONTE CARLO SIMULATION USING MATILAB

M. Indralingam
Department of Mathematics
University of Moratuwa

Abstract:

Many computer programming languages are currently available for various computing needs. MATLAB is one
language which is most suitable for all scientific programming. Many engineers and scientists have not
understood or unaware of its potential. In this paper we have presented the simple Monte Carlo simulation using
MATLAB, which could be extended for large complex problems. Two simple examples in Queuing theory and
Integration are discussed and compared with theoretical results.

1. INTRODUCTION:

Simulation[1] is one of the popular techniques used in Operational Research(OR). Generally
simulation techniques are used where mathematical modeling techniques cannot be applied to
any given problem. In practice simulation is done using the computer. There are various
packages available for this purpose, for examples GPSSPC, SLAM, SIMSCRIPT, etc..
Recent version of MATLAB includes many toolboxes for specialized computing in the
fields such as Neural Networks, Control theory, Image Processing. This paper illustrates a
simple method of discrete event stochastic simulation and integration using MATLAB. Two
examples are discussed with relevant MATLAB codes .

2. MATLAB

MATLAB is a vector-oriented language. All operations are generally carried out on vectors,
or matrices, and not on the individual elements on the matrix. Most matrix operations are
‘built-in' 'to MATLAB, and are extremely fast and accurate. Other operations are
implemented using subroutines of commands which are interpreted-these may be executed
very quickly as well. There are groups of subroutines for simulating nonlinear dynamical and
elementary signal processing. The next section describes using the random number
generation procedure, how a simple queue system can be simulated.

3.1 QUEUE MODELING

Most people have a fairly good idea of what constitutes a queue, since most have to queue for
some kind of service every day. A good example of the type of queue we are interested in
simulating is the queuing system of bank. A bank has customers who join a line, or several
lines, in order to obtain a service. There may be many constraints on the queue. For example,
the queue cannot get infinitely large in a bank because of limited room. There are many
varieties of queuing mechanisms [2] and its application in various can be found in various
fields. We shall look at some theory for possibly the simplest queue. The ‘M/M/1° queue,
which stands for ‘Poisson arrivals, Exponential service and 1 server’ has the following
properties: time between arrivals are independent and exponentially distributed with
parameter A, service times are independent and exponentially distributed ‘with parameter u .

The mean time between arrivals is thus 1 and the mean service time is x~'. We would like

372

to know, among the other things, the distribution of the length of the queue at any time and
the mean of the times that customers queue or wait (see appendix 1 for some theoretical
results).

Matlab implementation of an M/M/1 queue

The following MATLAB function [2] implements an M/M/1 queue. It should be typed into a
file ‘gsim.m’. the main part of the program, the ‘while loop® represents the transaction
between ‘busy periods’. That is each loop corresponds to one busy period.

function [T,N,W,busy,idle,x,y]=gsim(lam,mu,n)
$usage [T,N,W,busy,idle,x,yl=gsim(lam,mu,n)
x=-log(rand(n,1))/lam;
y=-log(rand(n,1))/mu;
W=zeros(n,1) ;
idle=[x(1)];
busy=[];
k=1;
j=[1]1;
while j(k)<=n
k=3 (k) ;
a=cumsum(x(jk+1:n));
s=cumsum(y (jk:n-1)) ;
b=find(a>s) ;
if isempty(b)
j=[3;n+l];
else
mb=min (b) ;
J=[3:ik+mb] ;
idle=[idle;a(mb)-s (mb)];
end
3kp=3 (k+1)-1; _
busy=[busy;sum(y (jk:jkp))];
W(jk:jkp)=cumsum(y(jk:Jjkp)-[0;x(Jk+1:3kp) 1)
k=k+1;
end

$reconstrction of queue size

k=k-1;

s=zeros (2*k,1) ;

s(:)=[idle';busy']l;

s=cumsum(s) ;

N=zeros(2*n+1,1) ;

T=N;

N(1)=0;

T(1)=0;

for p=1:k
jp=3(p);
jpp=Jj (p+1)-1;
z=[0;cumsum(x (jp+1:jpp)) ;cumsum(y (ip:jpp)) 1/
t=kron([1;-1],ones (jpp+l-jp,1)):
[u,vl=sort(z);
N(2%jp:2*jpp+l) =cumsum(t(v));
T(2*jp:2*jpp+l) =u+s (2*p-1) ;

end

373

The following program takes the output from ‘gsim.m’ And computes summary statistics. It
should be typed into a file called ‘qsum.m’.

function [Nbar,Wbar,pidle,xbar,ybar]=gsum(T,N,W, busy,idle, x,y)
%usage [Nbar, Wbar,pidle,xbar,ybar]l=gsim(T,N,W, busy,idle,x,y)
n=length(x) ;

Nbar=diff (T) '*N(1:2%n) /T (2*n) ;

Wbar=mean (W) ;

pidle=sum(idle) / (sum(busy)+sum(idle)) ;

xbar=mean (x) ;

ybar=mean (y) ;

where Nbar: mean number people in the queue
Wbar: mean waiting time
Simulation output:

The following is the output from a sample run of the above programs. The first three lines
contain the calls from the MATLAB command window. The figure depicts queue length
against time. Note that, although p = % and thus the theoretical mean queue length should

be 1 the queue gets quite large. For this reason, the simulation has been carried out a second
time. The result show behavior which is more like that expected from the theory
(Appendix1).

» [T,N,W,busy,idle x,y]=qsim(1,2,100);

» [Nbar,Whbar,pidle,xbar,ybar]=qsum(T,N,W busy,idle,x.y);
» [Nbar,Whbar,pidle,xbar,ybar]

ans =
25790 23842 0.4021 09157 0.5528

» [T,N,W.busy,idle,x,y]=qsim(1,2,100);

» [Nbar,Whbar,pidle,xbar,ybar]=qsum(T,N,W busy,idle,x,y);

» [Nbar,Whbar,pidle,xbar,ybar]

ans =

0.8073 0.7208 0.5133 0.8929 0.4367

The following codes produce a graph of queue length Vs time (figure3.1) . Similarly other
relevant graphs can be produced.

» stairs(T,N)
» title('Queue simulation\la((\bq,p=l, \mu=2")
» xlabel('time'),ylabel('Queue kngth'),

Vs

Queue simulation =1, =2

45+

351

Qu
eu 3

e
len25}

Figure 3.1

To simulate G/G/1 (Queue model with general arrival and service distribution), only we have
to write function procedures to get the values for x (arrival rate) and y (service rate) from a
given empirical distribution. This would be possible using many features provided by the
MATLAB programming language.

4. Monte Carlo Integration

Suppose we wish to approximate the integral

Again without loss of generality let us assume that g, =0 andb, =1 Vi=0 . Let
{X,:i=1,2,.N}be N points uniformly distributed in the p-dimensional unit hypercube
[0,17°. This can be simulated by generating Np uniform random numbers and forming them
into N p-dimensional vectors). Monte-Carlo approximation of the above integral I is defined
by:

> g(x)

fs
N3

In the appendix 2 ,order of the error of the M-C integration is shown to be Xlﬁ . Error

order of traditional method and Monte Carlo methods are given in the table 4.1. It shows for
three or more dimensions, Monte Carlo integration should achieve smaller errors than the
traditional techniques.

375

P | Traditional Method | Monte Carlo Method
1 [o(%) ol
2 |ol%) ol
3 [olg) ols)

Table 4.1

In Appendix 3 traditional numerical techniques of integration are briefly described. It may
help the reader to get the idea of Matlab codes presented in the next section.

4.1 Matlab Implementation

In this section, the following example is selected to demonstrate the Monte Carlo integration
procedure.

[f e T ans, . ds,

The Matlab function given below are easily adopted to much more general integrands.
Although it is easy to write Monte Carlo routines to do this for general p, it is not as easy to
write general numerical integration programs. For this reason, the code presented below will
work for only p <3. The first four segments of code contains three Matlab functions: the
first implements the Monte Carlo technique, the second the ‘left” integrals, the third the
‘right’ integrals and the fourth the ‘midpoint” rule, where areas are approximated by adding
the areas of rectangles drawn through the ordinate corresponding to the midpoint of the
intervals. The fifth segment contains the code for a function which compute the four
integrals.

function y=mcexp(p,N)
% usage y=mcexp (p,n)

if p>1

y = mean (exp(-sum(rand(p,N))));
else

y= mean (exp(-rand(N,1)));

end

function y=rectarl (p,n)
%$usage y=rectarl(p,n)
x=(0:n-1)'/n;
k=ones (size(x)) ;
y=0;
if p==1
y=mean (exp (-x)) ;
elseif p==2
y=mean (mean (exp (- (x*k'+k*x')))) ;
elseif p==3
for j=0:n-1
y=y+mean (mean (exp (- (x*k '+k*x'+3/n)))) ;
end
y=y/n;

376

a

else
y=naninf;
end

function y=rectarr(p,n)
%usage y=rectarr(p,n)
x=(1:n)"'/n;
k=ones (size(x)) ;
y=0;
if p==1
y=mean (exp (-x)) ;
elseif p==2
y=mean (mean (exp (- (x*k "+k*x')))) ;
elseif p==3
for j=1:n
y=y+mean (mean (exp (- (x*k'+k*x'+3/n)))) ;
end
y=y/n;
else
y=naninf;
end

function y=rectarc(p,n)
$usage y=rectarc(p,n)
x=((0:n-1) '+0.5) /n;
k=ones (size(x));
y=0;
if p==1
y=nean (exp(-x)) ;
elseif p==2
y=mean (mean (exp (- (x*k "+k*x')))) ;
elseif p==3
for j=0:n-1
y=y+mean (mean (exp (- (x*k'+k*x'+(3+0.5)/n))));
end
y=y/n;
else
y=naninf;
end

function [yl,y2,y3,vy4,y]l=mmcexp (n)
%usage [yl,y2,y3,y4,ylmcexp(n)
for p=1:3
yl=mcexp (p,n"p) ;
y2=rectarl (p,n) ;
y3=rectarr(p,n);
yd=rectarc(p,n);
y=(l-exp(-1))"p;
fprintf ('For dimension %2.0f, the MC, left, centre',p);
fprintf('and right integrals are ');
fprintf('%7.6f %7.5f %7.5f %7.5f\n',yl,y2,y4,y3);
fprintf('The integral is % 7.5f\n',y);
fprintf ('The errors are %7.5f %7.5f ',abs(y-yl),abs(y-y2));
fprintf('%7.5f and %7.5f\n\n"',abs(y-y4) ,abs(y-y¥3));
end

377

Simulation Output:

» [yl,y2,y3,y4,y|=mmcexp(10);
1, the MC, left, center and right integrals are 0.591330 0.66425

For dimension

0.63186 0.60104

The integral is 0.63212

The errors are 0.04079 0.03213 0.00026 and 0.03108

For dimension 2, the MC, left, center and right integrals are 0.407794 0.44123
0.39924 0.36125

The integral is 0.39958

The errors are 0.00822 0.04166 0.00033 and 0.03833

For dimension 3, the MC, left, center and right integrals are 0.247943 0.29309
0.25226 0.21713

The integral is 0.25258

The errors are 0.00464 0.04051 0.00032 and 0.03545

» [yl,y2,y3,y4,y]=mmecexp(20);
1, the MC, left, center and right integrals are 0.601168 0.64806

For dimension

0.63205 0.61645

The integral is 0.63212

The errors are 0.03095 0.01593 0.00007 and 0.01567

For dimension 2, the MC, left, center and right integrals are 0.401639 0.41998
0.39949 0.38001

The integral is 0.39958

The errors are 0.00206 0.02040 0.00008 and 0.01957

For dimension 3 For, the MC, left, center and right integrals are 0.251181 0.27217
0.25250 0.23426

The integral is 0.25258

The errors are 0.00140 0.01959 0.00008 and 0.01832
» [0.00768 0.00001 and 0.00748

Summary of the simulation results are presented in the following table.

Pm |10 20 30 40 50

1 0.04079 | 0.03095 | 0.04275 |0.04863 | 0.00825
2 0.00822 | 0.00206 | 0.00145 | 0.00217 | 0.00205
3 0.00464 | 0.00140 | 0.00002 | 0.00025 | 0.00022

Note that, although the errors using the traditional numerical techniques are improving with
n, the Monte Carlo techniques yield the above errors, which do not uniformly decrease with n
due to random sampling.

378

i
(o

5. CONCLUSION:

In this paper, We have shown how stochastic simulation can be carried out in a simple and
effective way using MATLAB. Two examples (Queue and Integration) are considered for
this purpose. With further work , it should be possible to simulate complex simulation. The
MC integration technique considered here can be effectively used with multiple integration
with complicated integrands which will be useful for practical applications such as volume
and surface area enumerations of different shapes . The codes presented here do not use the
full power of graphic, animation procedures of MATLAB. We think it should be possible use
many other built in functions of MATLAB to perform animated complex simulation with

graphics.

REFERENCES

1. LAW ,AM and W.D.KELTON (1991), Simulation Modeling and Analysis, ed,
McgrawHill, New York, NY.

2. PART-Enander.E, SJOBERG. A, MELIN.B and ISAKSON. (1996) The MATLAB
hand-book, Addison Wesley Longaman

3. BANKS. J, CARSON. J. S and NELSON. B. (1996) Discrete —Event system
simulation, Pretice-Hall of India

Appendix 1:
Some basic theoretical results of M/M/1 queue:

If time between arrival is assumed as exponentially distributed with parameter 2 and time
between service time is assumed as exponentially distributed with parameter u, the

following result can be proved.

Probability that the service is busy =

U

: A A

Average Number of Customers in the Queue = e

HH-
Average Number of Customers in the System =——'l—/1

—
Expected waiting time of a customer in the queue =i—17

HHE-

Expected time a customer spend in the system =——

379

Above techniques may be generalized to more than one dimension. Suppose we wish to
approximate the integral.

b (b
L L 8(x;, x,)dx,dx,
Without loss of generality, let’s suppose that @, =a, =0 and b, =b, =1 (We may transform
x, and x, so that the limits will be 0 and 1)
Divide the x, and x, unit intervals into n equal segments. Then the sum of the ‘left volume
is

LG_ Z:;g()
)

The error will be of the same order as the difference between the two approximations. The
difference is

1 Z j nl : n-1 . . .
HE) 52 S} 500
_ %[[+ [g1 x)dx [g(x0)dsx - [g0, x)ax + 0(3]
=]
n

However, the number of points at which the function has been computed is

3
X

=
<
]
Sai

=

-1
=3 5l

j=0

I~
3|

>

=
o
Si-

i=

N =n?, so that the order of the error is L In general, for p dimensional integrals, the

JN

order of the errors is

1
N

380

),.

