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ABSTRACT

The paper describes the development of a speech trainer based on digital signal processing (DSP)
techniques, for hearing impaired children. The DSP techniques investigated in the implementation of this
software-based speech trainer, the final “product’ and its degree of success in actual use are highlighted.
Children with congenital hearing impairments have difficulties in speaking, and even in making the basic
sounds associated with speech. Speech therapists use specialized training methods to train such children.
The first step in such programs is the training of the pronunciation of common sounds. The dearth of
qualified speech therapists, and other facilities hinder the speech development of many children in need of
such training.

The computer-based training tool described here, will aid a child, with initial guidance from an adult, to
master the pronunciation of initial sounds taught in a speech training programme. An analysis procedure
has been developed to compare a hearing-impaired child’s utterance with that of a normal person, estimate
the degree of correctness and visually indicate this to the child. Through such an iterative visual feedback
process, which also indicates the target for correct pronunciation, this software tool can guide the child to
self-learn in a game-like environment.
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1. Introduction

Hearing losses can occur at any age. Some of these conditions are curable and some are
not. If hearing loss is present from birth, it is always accompanied by speech loss, unless
proper speech therapy is given. There are a few government funded and Non
Governmental Organizations (NGOs) helping the training of hearing impaired children.
However, such institutions are severely constrained in trained staff and funds to acquire
modern training equipment.

During speech therapy sessions, children are first
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Even though such trainers are extremely expensive, it requires in addition to the software,
only a PC with multimedia facilities, which is commonly available at affordable cost.

This was the motivation behind the development of our speech trainer. The software
package including the user interface and the underlying DSP techniques were developed
to run on common desktop PCs having a sound card and a microphone. This training tool,
in its current status, can guide children in pronouncing the five vowel sounds, the first
step in a speech therapy course.
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Figure 1. Basic operation of the speech trainer trainer.



The purpose of the DSP block in Figure 1 is to analyse the trainee’s utterance and extract
some measures that can be compared with similarly extracted measures from a template.
The extracted characteristics should in the first place, be able to differentiate between a
correct utterance and one that is not. A secondary, but as important feature of these
characteristics should be that they be speaker-independent.

The comparison algorithm compares the charactenstics extracted from the trainee’s
utterance with those extracted in the same way from a normal person’s utterance of the
same sound. The algorithm examines a set of pre-defined conditions in a pre-determined
sequence to arrive at a decision as to whether the trainee’s utterance was correct or not.

This decision is conveyed to the trainee through the visual display, accompanied by a
visualized version of the characteristics extracted from his utterance. The same
characteristics extracted from the template utterance, are also displayed as a target to be
aimed at by the trainee.

The major part of the development concentrated on the processing of sounds to extract
suitable characteristics and the accompanying comparison algorithms. Ditferent
techniques were investigated for this purpose using MATLAB® [1]. The techniques that
were found successful were then integrated, using the MATCOM®[2] MATLAB
compiler, into a user interface developed through Visual C++ [3].

2. Short-Time, Time-Frequency Analysis of Speech

Speech processing techniques for analysis, synthesis, coding, and recognition are well
established. It is well known that a speech signal in the time domain, provides little
information for parameter extraction. On the other hand, time-frequency analysis has
benefited practically every aspect of speech processing through the application of short-
time analysis methods [4],[5].

State-of-the art systems for speech recognition, coding, and synthesis segment the speech
into short intervals in the order of tens of milliseconds, analysing each segment of speech
under the implicit assumption that the signal is stationary over the interval.

Short-time analysis of speech dates back 50 years to the development of the sound
spectrograph [5]. This provided a means of producing a display of the time-varying
spectrum of speech in a relatively short time. The focus of [6] was the use of
spectrogram reading as an aid to the hearing impaired.

One of the first large-scale studies following the introduction of the spectrograph,
investigated the frequencies of the first and second formants of ten steady-state English
vowels recorded from a number of speakers. A plot of the measured values of the first
formant F1 versus the second formant F2 revealed that the vowels cluster into distinct
regions, defining what is commonly known as the vowe/ triangle [7]. Another important
study of the spectral characteristics of speech concerned the relationships between vowel
formants and bandwidth [8].

Spectrograms were also used to study six diphthongs of the English language in [9]. The
trajectories of F1 and F2 were sampled at several points through the time course of the
diphthongs. Scatter plots of the frequency pairs again clustered into distinct regions, with
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the time course of formant transition in the F1-F2 plane providing further information for
analysis.
The notion of time-varying or instantaneous frequency were implicit in all these analyses.

3. The Spectrogram

The general trend in speech recognition has been to use formant analysis for the
identification of steady-state vowels, and to use spectrographic analysis for consonant-
vowel (CV) transitions.

However, during the course of our investigations, it was observed that the speech
characteristics obtained through the above two methods from hearing impaired people,
differed considerably from those of normal people. This lead to difficulties in using
formant analysis and the corresponding vowel triangle as a training tool. Better results
were evident through processing of the Spectrogram. Therefore, the Spectrogram was
used as the basic tool for extracting sound characteristics for the speech trainer.

The Spectrogram is a method of displaying results of time-dependent frequency analysis
of signals. They are typically used in the analysis of non-stationary signals such as
Radar, sonar and speech [10].

The time-dependent Fourier transform of a signal x/n/ is defined as:
X[n,A)= 3 x{n+mwimle " 1)

Where w/n] is a window sequence. In this analysis, the one-dimensional sequence x/n/ is
converted into a two-dimensional function of the time variable », which is discrete, and
the frequency variable A4, which is continuous.

The above equation can be interpreted as the Fourier transform of x/n+m] as viewed
through the window w/m]. The process can be visualized as the signal passing through a
stationary window, so that for each value of n, a different portion of the signal is viewed.
The primary purpose of the window is to limit the extent of the sequence to be
transformed for each n, so that the spectral characteristics of the signal are resonably

stationary over the duration of the window. As the window becomes shorter, the
frequency resolution becomes poorer, while the time resolution improves.

This time-frequency trade-off of the spectrogram is a well-known factor in short-time
analysis. The more rapidly the signal characteristics change, shorter the window should
be.

In digital signal processing the Discrete Fourier Transform (DFT) is used extensively, for
the computation of which, a variety of different algorithms are available.

Suppose the window has length L, with samples beginning at m=0, i.e.;
w[m]=0 outside 0<m<L-1

If we sample the X/n,4) at N equally spaced frequencies 4, = 27/N, with N 2 L, we
obtain the discrete, time-dependent Fourier transform from (1) as:
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X[n, k)= ix(n+m)w(m)e"“"”")""‘, 0<k<N-1 )

m=0

This is the DFT of the windowed sequence x/n+m] w/m]. It can also be expressed as:

X,[k]= X[rR,k] = X[rR27k | N] = LZ‘: X(rR + m)yw(m)e /@ Nmix] 3)
m=0

Where 7 and & are integers such that, -cc <r < cand 0 < k < N-1.

The above notation denotes explicitly that the sampled time-dependent Fourier transform
is simply a sequence of N-point DFTs of the windowed signal segments:

x,[m]=x{rR+mWw[m] -xc<r<oaand0<k<N-I (4)

Equation (3) involves the following integer parameters: window length Z, number of
samples in the frequency dimension ¥, and the sampling interval in the time dimension R.

The choice L <N guarantees that we can reconstruct the windowed segments x,/m/ from
the block transforms X;/k/J. If R<L, the segments overlap, but if R > L , some samples of
the signal are left out, and therefore, it cannot be reconstructed. In general, the three
sampling parameters should satisfy the relation N >L >R

Computational time and resources must also be taken into consideration in determining
these parameters, as the spectrogram would be an array of N rows and a number of
columns determined by the length of the speech segment being analysed.

Figure 2(a) depicts the lines in the (i 4)-plane corresponding to X/n,A). Figure 2(b)
depicts the sampling points corresponding to X,/k/ in the (1, 4)-plane for the case N = /0
and R = 3.

Figure 3(a) shows a spectrogram of a speech segment with Z, = /08 and R =/6. This is
called a wideband spectrogram, as the relatively small L implies low time resolution.
Figure 3(b) shows the spectrogram of the same speech segment with . = 720 and k = /6.
The larger L results in a higher spectral resolution in this narrowband spectrogram.

4. Spectrographic Speech Processing for the Speech Trainer

Spectrogram of the Sound

The Spectrogram described in the previous section was used as the first step in the digital
signal processing for extraction of vowel sound characteristics, which could represent a
measure of the correctness of the sound, yet ignore speaker-dependent variations.

Figure 4 illustrates the procedure for the spectrogram computation. The following
parameters were used to obtain the spectrogram:

Number of samples for FFT (V) : 512
Time sampling (R): 256
Window length (L): 512
Window type: Hanning
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Figure 2. Grid of sampling points in the (n,4) plane for the sampled time-
dependent Fourier Transform with N =70 and R=3
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Figure 3. (a) Wideband spectrogram (b) Narrowband spectrogram for a
speech segment
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Figure 5 shows spectrograms obtained in this manner for a normal person, a
hearing impaired person and a hearing impaired person whose speech is
reasonably normal, as a result of being well-trained.
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Figure 5. Sample Spectrograms for 4



Extraction of Template Data from the Spectrogram

The Spectrogram obtained for each vowel as described above is a large matrix, having
256 rows, and a number of columns determined by the length of the speech sample.
Therefore, using the spectrogram itself as a template would be a highly computation-
intensive task. Further, the presence of speaker-dependent characteristics, and silent
periods also cause difficulties in using the spectrograr as a template.

Therefore, a row-wise autocorrelation was carried out on the spectrogram matrix, and a
few of the elements having the highest values were identified as corresponding to the
dominant frequency components. The autocorrelation process provides a quantity
proportional to the power at each frequency component, and it also cancels out silent
periods that may be present in the speech sample.

Figure 6 shows the dominant frequencies for two vowels obtained by the above
procedure. The data was obtained from 40-50 normal speakers. The figure shows that
though the dominant frequency varies from speaker to speaker, they lie in noticeably
different frequency bands. The dominant frequency for d falls in the 600 — 1000 Hz band,
while that of # falls in the 350 - 600 Hz band. However, there is some overlap due to
speaker dependancies.
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Figure 6. Dominant frequencies for vowel sounds

Initial observation of the five vowel sounds indicated that the dominant frequencies fall
into different bands, and it would be sufficient to consider 16 frequency bands in the 0 —
4 kHz range. Thus, the frequency resolution was reduced by averaging each group of 16
consecutive frequency points (16 consecutive rows of the analysis matrix). The analysis
matrix at this point reduces to 16 rows.

A further reduction in the analysis matrix was possible using the fact that a correctly
articulated vowel sound contains fixed frequency components throughout, as illustrated
in Figure 5(a). A vast majority of samples from hearing impaired people demonstrated
time-varying frequency components. Therefore, the presence of constant significant
frequency components throughout the vowel duration was taken as an indication of
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correct pronunciation. Therefore, the average value of each row of the 16-row analysis
matrix was computed, reducing the analysis matrix to a 16 x 1 column vector. The
analysis vector (template) for each vowel was obtained by averaging the above column
vector for 50 normal, male speakers.

Therefore, the template for each vowel consists of quantities proportional to the power in
each of the16 frequency bands when pronounced properly.

Table 2 shows the analysis vectors so obtained, along with computations of the
percentage of power in each frequency band for each vowel.
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Table 2. Analysis vector for each vowel (power in each frequency band) and the percentage

¥
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The following features can be extracted fromTable 2:

.1. dhas most of its power concentrated in the 750 Hz band, with the 500 Hz band
closely following.

2. a has most of its power concentrated in the 500 Hz band,

a has more than 10% of its total power concentrated in the 1500- 2000 Hz band,
which is not the case for d .

0, ii and @ all have their dominant frequencies concentrated in the 250 Hz band.

a has more than 8% of power concentrated in the 1750 — 2500 Hz bands, which
is not the case foro and #.

6. 0 has more than 20% of its power concentrated in the 500 Hz band, which is not
the case fora and .

Factors 1, 2 and 3 above may be used to differentiate between ¢ and a. Factors 4, S, and 6
may be used to differentiate between o, # anda
5. Comparison Algorithms

From the above features extracted through spectrographic anaylsis, the algorithms used to
detect whether a sound has been articulated properly are developed. These algorithms are
summarized in Figure 7 and are self-explanatory.

Analyse Sound Analyse Sound

Is the dominant
frequency band
500 Hz or 750
Hz?

No

Power in 1500 and
1750 Hz bands less
than 10% ?

Power in 1750 to
2500 Hz bands
greater than 6%

v

PASSED ! FAILED ! PASSED ! FAILED !

(a) Test algorithm for ¢ (b) Test algorithm for a

Figure 7. Test algorithms for the vowel sounds
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Analyse Sound

Is the dominant
frequency band

Power in 500 Hz No

band more than 10%
¢

b 4

PASSED ! FAILED !

(¢) Test algorithm for o

Analyse Sound

Power in 1750 to
2750 Hz bands more
than 6% ?

PASSED ! FAILED!

(d) Test algorithm for @

Analyse Sound

Power in 1750

2750 Hz bands Jess

than 6% 7

Power in 500 Hz
band /ess than 20
2

No

to

PASSED !

FAILED !

(e) Test algorithm for 4

Figure 7 contd. Test algorithms for the vowel s(;unds
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6. Evaluation of Speech Trainer Performance and Improvements

The evaluation of the above algorithms was done by testing normal speech samples, as
well as samples from hearing impaired children. Approximately 45 samples were used in
each case for each of the five sounds. The results of these test are summarized in Table 3.

Table 3. Evaluation of the test algorithms

| Percentage of correct decisions
Vowel sound Normal Hearing
Impaired
d 95.45 78.00
a 77.27 71.40
o 67.50 71.40
‘ a 81.30 69.00
3 i 80.00 57.14

The reasons for false decisions in the case of normal speech samples were traced to two
reasons: the presence of noise, and the comparison of female voice samples with features
extracted from male voice samples. The latter reason was the primary cause for erroneous
decisions in the sound @.

Testing of the algorithms for voice samples from hearing impaired children showed
relatively lower accuracy, though the gender-dependent errors were reduced. Further
study of voice samples from the latter category revealed the following possible causes
for the erroneous test results:

e Some samples contained strong  tones, rather than a combination of
frequencies. This results in the test algorithm passing a sample which sounds
very unnatural. This was the primary reason for error in the case of #, whose
test algorithm is one which evaluates # by eliminating G and a.

e In some samples, the vowel sound is preceeded with a consonant. Here too,
the test algorithm passes an incorrect sound.

e Sometimes the spectrogram is excessively distorted such that the comparison
algorithm fails.

The first of these can be accounted for in the comparison algorithm, by allowing for a
condition which detects whether power is excessively concentrated in a single band. In
such a situation, the algorithm can reject the sample without progressing any further in
the testing process.

After making the above modification to the test algorithms, testing of the hearing
impaired samples were carried out again. The modification used the presence of more
than 75% power in any frequency band to fail a test sample. The results are presented and
compared with the previous results in Table 4.
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Table 4. Evaluation of modified test algorithms

E Percentage of correct decisions
| Vowel sound Original Modified
Algorithm Algorithm
d 78.00 97.5
a 71.40 90.3
0 71.40 89.5
a 69.00 95.6
/] 57.14 90.24

From Table 4 it is evident that significant improvements in the results are obtained by
this modification.

Elimination of errors due to an initial consonant sound is currently being investigated.
Modifications to the autocorrelation of the spectrogram at the early stages of processing
has been demonstrated to reduce these errors.

6. The User Interface

The above sections of the paper detailed the DSP-based functions of the speech trainer,
which enables the testing of a sound for its correctness. The function of the user interface
is to guide the user to utter a sound, and then provide him with feedback as to its
correctness. Both the initial guidance, as well as the feedback must be provided visually.

Initial visual guidance is provided by a graphical display of the letter representing the
sound, and a picture of a person making the sound. The latter could also be a video clip.

Once the user makes the sound and it is analysed by the trainer, the visual feedback as to
its correctness is provided by two methods. The decision made by the software as to
whether the sound was correct or not is conveyed by the traditional tick mark or cross
respectively. In addition, the spectral levels obtained for each of the 16 frequency bands
may also be displayed. The expected levels according to template data may be provided
for reference, or as the target. The actual levels obtained by analysis of the sample may
be displayed in a distinctly different manner. This could be integrated into the form of an
interactive game, where the child learns to achieve the target levels by repetitive
excercise.

7. Summary and Conclusions

The development of a DSP-based software tool for speech training of hearing impaired
children was described. This is able to assist in the first stage of speech training: the
articulation of the basic vowel sounds. The paper illustrates the signal processing aspects
of the trainer.

The software analyses the trainee’s utterance, and extracts characteristics to be compared
with a template utterance. The characteristics to be extracted as well as the comparison
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algorithms were developed, and have been described in detail. The characteristics used
for the detection of the correctness of the utterance are fairly simple, and are extracted
using time-frequency analysis of speech samples. The comparison algorithms are based
principally on the power distribution in the respective sounds.

The tool has been tested using samples of speech from hearing impaired children, and the
results show success rates of approximately over 90% in the case of all vowels.

The user interface for the speech trainer, which is currently under development, uses
visual feedback to indicate to the trainee, the degree of correctness of his utterance. It is
intended to develop the user interface in the form of a game, where the child trains
himself through repetitive attempts.
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