COMBINED SYMBOLIC AND NUMERICAL METHODS FOR
SOLVING EQUATIONAL SYSTEMS

Vishaka Nanayakkara and Gihan Dias
Department of Computer Science & Engineering
University of Moratuwa, Moratuwa.

Email: vishaka@cse.mrt.ac.lk, gihan@cse.mrt.ac.lk

mailto:vishaka@cse.mrt.ac.Ik

COMBINED SYMBOLIC AND NUMERICAL METHODS FOR
SOLVING EQUATIONAL SYSTEMS

Vishaka Nanayakkara and Gihan Dias
Department of Computer Science & Engineering
University of Moratuwa, Moratuwa.

Email: vishaka@cse.mrt.ac.lk, gihan@cse.mrt.ac.lk

ABSTRACT

In this paper we discuss systems developed to assist scientists and engineers to solve their problems
based on mathematical models using numerical and symbolic methods. Numerical library routines for
numerical algorithms and Computer Algebra Systems (CASs) for symbolic computation are both now
well established areas. The recent research interest in these areas is oriented towards combining these
solvers, rather than on improving the individual solvers. We analyse the state of research in numerical
and symbolic solvers as well as the area of these combining methods or coupled (or combined) systems
as they are commonly referred to. We evaluate these coupled systems to identify their essential features
and various methods of integration. Based on our analysis we then propose a new strategy for
integration which can enhance the facilities provided by the existing symbolic and numerical systems.

INTRODUCTION

Engineers and scientists use equations to model the problems arising in their work,
and then try to solve them. If the solution cannot be obtained by symbolic
simplifications alone, the equations are transformed to a form in which they can be
solved using numerical algorithms. Before computers became available both tasks
were done manually. The desire to mechanise the tedious, often repetitive numerical
calculations and to increase speed and accuracy was one of the driving forces behind
the development of computers.

To exploit the advantages of computers for numerical calculations, users started
developing new algorithms; which could make more efficient use of their power.
Many algorithms were developed to solve the most common types of numerical
problems. Collections of such algorithms, coded in various high level programming
languages, have long been available. These numerical programs have frequently been
refined to increase their efficiency and accuracy and hence are usually superior to any
code a non-expert user might write for the same purpose. In order to use such a
standard algorithm users need to transform their original problem to an instance of the
one solved by the algorithm.

Symbolic computation can be used in the transformation of the initial mathematical
description into an equivalent form that is either itself the solution or an instance of a
problem for which a numerical solution algorithm exists. This process requires
mathematical knowledge about transformation rules. Computer Algebra Systems are
increasingly becoming capable to carry out these transformations without the risk of
error and at far greater speed than would be possible if the same transformations were
done by hand.

Given that there are tools to perform both numerical and symbolic calculations, the
users have developed many solution algorithms which can efficiently be implemented
using these solvers from both numerical and symbolic domains. However the absence
of an environment to use these solvers interactively may hinder the efficient
implementation of these algorithms. Coupled systems, systems which allow the

11

interactive use of symbolic and numerical solvers, can overcome this problem. Such
systems allow the users to work using equations, formulae, symbols and numerical
computations, evaluate results using graphical facilities provided by CASs and
automatic or semi-automatic selection of numerical algorithms.

Design and development of these systems is still at an early stage. During the last two
decades many researchers have approached this problem with different methods and
many coupled systems have been designed and implemented. However one common
characteristic of these attempts are that the systems are being developed only for
particular applications. These application domain specific combined solvers have
some drawbacks. The models, which cannot be fitted into one of these application
areas or the ones, which require, more than one mathematical domain cannot benefit
from such environments. The cost involved in developing custom built environments
prohibits users from developing combined solvers specifically for an application.
Therefore the requirement is to have an environment where both symbolic and
numerical systems are used interactively without restrictions on the problems it can be
used for. We propose a method to build an environment for using symbolic and
numerical solvers for various application areas.

NUMERICAL LIBRARIES

The solvers available for numerical calculations largely consist of high level
programming language subroutines implemented using the algorithms developed by
various mathematicians. These subroutines have been organised into various libraries
available as commercial or public domain software. In addition to the libraries there
are systems developed with easy to use interfaces to similar types of subroutines.
Numerical library routines in general are built using subprograms collected over the
years. The available libraries are either general purpose or specific for some area of
mathematics. The criteria used in classification of the subroutines are their scope,
numerical stability, accuracy and speed.

NAG library routines [http: www.nag.co.uk] and Numerical Recipes [1] are examples
for general-purpose numerical libraries. These libraries consist of subroutines
developed using the most commonly used algorithms in mathematics, and covering
the most frequently occurring mathematical problems. However these routines may
not in certain situations achieve the same efficiency as some of the more specific
ones. There are some libraries available to provide numerical solutions to problems
that can be grouped into particular areas of Mathematics. The areas are selected to
allow a large cross section of problems to be treated under the same area but are
specific in such a way that most of the algorithms in any area can be programmed
under one library. Examples of these area specific libraries are BLAS (Basic Linear
Algebra Subprograms) [2,3], LAPACK (Linear Algebra PACKage) [4,5] and
Tempiates [6] for Linear Algebra and IMSL (International Mathematical and
Statistical Library) for Statistics.

Methods for Selecting Routines

The large number of algorithms and implementations available can make it difficult
for users find the one best suited for a given problem. Especially non-expert users
need assistance in the selection and the use of the available software. The traditional
method of written documentation can sometimes be difficult to use for inexperienced

1z

D s e

users. If these libraries are to be used in automated solution processes there must be
methods to search for algorithms to match the problem requirements using keywords.

GAMS (Guide to Available Mathematical Software) developed by the NIST (National
Institute of Standards and Technology, USA) provides a large tree-structured database
of mathematical and statistical software which is available on-line. GAMS allows
users to search based on library and subroutine names and keywords. Users can access
GAMS using the web browsers at the URL http://gams.nist.gov.

Using an expert system oriented approach to subroutine selection is another
possibility. NAXPERT [7] claims to be a prototype expert system, which gives advice
to users about a small mathematical library based on Fortran for IBM personal
computers. Users need to select the mathematical domain of the problem at hand and
then either give the keywords describing the problem or respond to the keywords
suggested by NAXPERT.

A more recent approach to select the subroutines is the use of Computer Algebra
Systems. ARC (Automatic Routine Chooser) [8] is a package developed to exploit
this idea. This system which is implemented in REDUCE [9] chooses the best
routines to match the user's description of the problem. It is implemented for a part of
the NAG library.

SYMBOLIC SOLVERS

With symbolic solvers users from Science and Engineering work with computers in
their natural working environments, (i.e. using equations and algebraic terms). Apart
from the long tedious sequence of mathematical manipulations, inappropriateness of
approximate numerical solutions (for example, in computing real roots of
polynomials), easy interpretation of partial results in symbolic form are also reasons
for the need for symbolic computing. Most modern day Engineers and Scientists use
symbolic preprocessing in order to ensure the efficiency and accuracy in carrying out
the algebraic simplifications in their work.

The concept of symbolic computing (or non-numerical computing) is not restricted
only to manipulation of algebraic equations. Program compiling, logic programming,
word processing, expert systems and other artificial intelligence applications are some
examples. But in the context of Computer Algebra (Symbolic Computing) in this
paper we discuss only the algebraic manipulation of mathematical terms. A Computer
Algebra System (CAS) can be defined as a collection of an algorithm with a data
structure for representing non-numerical data, a language making it possible to
manipulate them, and a library of effective functions for carrying out the necessary
symbolic operations.

The two major requirements expected from CASs are to provide a set of basic pre-

programmed commands which instruct the computer to carry out the algebraic

calculations and to offer a programming language which enables the users to define

higher level commands or procedures to enlarge the original set of commands. In

order to fulfill these requirements CASs usually provide the following functions.

e Operations on integers, rational, real and complex numbers to (in principle) any
desired accuracy.

13

e Simple analysis such as differentiation, expansion of series, etc and manipulation
of formulae and operations on polynomials.
e Matrix algebra with numerical and/or symbolic elements.

Window based environments and graphical outputs are now becoming standard
features of CASs. The field of CASs has now grown such that there are a large
number of general purpose CASs available. Maple [10] and Mathematica [11] can be
considered as the leaders among the commercial packages. The various news groups
formed on the Internet for different CASs are examples for widespread user
communities of these packages. In addition there are many special purpose CASs,
which were developed for specific problem domains. CAYLEY [12] and Macaulay
[13] are examples for such special purpose CASs.

MOTIVATION FOR COUPLED SYSTEMS

Efficient solutions of many problems encountered in Engineering and Science require
combination of methods from numerical analysis and symbolic computation.
Computers have long handled numerical calculations and as a result large libraries of
numerical routines are available. As an alternative to the traditional approach of often
tedious and error prone symbolic calculations by hand, CASs have become widely
used in the last 20 years. However, in applications, which require a high level of both
symbolic and numerical processing, the user is still forced to alternate between both
types of solvers. Instead it could be desirable to have both capabilities combined. This
has motivated various attempts at combined systems. In this section we will discuss
features of such systems, existing research work towards integrating different solvers
and problems related to producing efficient coupled systems.

Coupled systems can be defined as systems which provide facilities to implement
solutions to a given domain of applications using both symbolic and numerical
methods interactively, and without the necessity for the user to have specialised
knowledge of the underlying systems. These systems can help the user to solve
problems that need specialised knowledge and expertise. The merits of coupled
systems can be summarised as:

e Computational efficiency: Where appropriate symbolic computation can reduce
the numerical workload, for instance by pre-processing symbolic input to a form
which is numerically tractable.

e Reduction of errors: Limits and approximations can be handled better
symbolically than numerically.

e Automation: Simplified programming with automated solution process (e.g.
automated code generation).

e User guidance: Systems can be developed which allow even the non-expert users
to use them.

e Resource efficiency: Developing interfaces between existing numerical and
symbolic solvers costs less human and other resources than an entirely new
system.

e Reuseability of results: Combined systems allow recursive refinement of the
problem solving process without leaving the system.

14

Existing Coupled Systems

The realization of the need for combined the symbolic and numerical solvers has led
to a growing research effort in this direction and to the development of number of
systems. ELLPACK [14, 15], Sinapse [16, 17], ObjectMath [18, 19], FRISCO [20],
CAS/PI [21, 22] and OpenMath [23] are examples of some of the existing systems
which are presently available as complete systems or systems in the research stage.

Depending on the type and the area covered the existing work can broadly be
classified into two categories as Sofiware Environments and Protocols for Data
Interchange.

Software: Driven by the necessity of having systems which can solve specific
applications using both symbolic and numerical solvers many people have designed
systems using ad-hoc integration methods to communicate with solvers. But in spite
of the fact that there is no general method for communication among solvers such
systems can be considered as coupled systems. ELLPACK is an example for this
category. Sinapse, ObjectMath and FRISCO also exhibit similar features.

The systems in this area show two different trends in the domains they cover. Some
systems are developed to solve applications having similar mathematical problems.
For example ELLPACK can be used only to solve problems of PDEs. The aim of the
developers of FRISCO is to provide a solver for polynomials. On the other hand some
solvers are developed to solve problems in a certain application area. ObjectMath is
used to generate programs to design components for a certain industrial partner.
SciComp using SciNapse develops solvers customised for certain applications.

Protocols: Realising the lack of an efficient general method to transform data types
and handle other communication related issues in combining the solvers, recently
there have been several attempts to remedy this. The earlier attempts of ASAP [24]
and MP [25] have been followed by a more general method in the OpenMath project.

Functions that can be provided by coupled systems:

e Interactive access to both CASs and numerical library routines.
e Facilities for the users to work at various levels of abstraction, without leaving the
system, using equations, formulae, symbols and numerical computation.

e Facilities to evaluate results using extensive graphical facilities provided by
CAS:s.

e Automatic or semi-automatic selection of suitable numerical algorithms.

Efficient integration of systems from different origins involves dealing with many

complex issues. Some of these are

e Hiding command language variations between the different solvers by developing
a common interface.

e Transparent management of remote computations.
Automated programming environments to interactively communicate with solvers
providing easy and fast communication among solvers.

15

The existing approaches use different methods in addressing these issues. Also when
developing application-specific coupled systems the extent to which these issues has
to be met vary with the applications and the requirements of the users.

Most of the coupled systems have an aim of capturing the application knowledge
necessary in the field in which they are applicable. This makes reuse of knowledge in
those domains feasible without much trouble. Also the interactive use of solvers in
one environment facilitates the reuse of partial results generated for the same
problem.

In many coupled symbolic-numerical systems, the symbolic analysis of a problem is
used to determine which of a given menu of numerical procedures needs to be
performed. The symbolic routines then call the chosen numerical procedures with the
appropriate numerical parameters. The output of the numerical computation is either
the desired results themselves, or is passed back to the symbolic routines for further
analysis and action. The link between symbolic and numerical components is static in
the sense that the numerical routines are chosen from a pre-selected collection. The
only degree of freedom is the choice of input parameters to them.

A more flexible way to couple symbolic and numerical computation is to use a CASs
to generate numerical code automatically, on demand, from the symbolic component.
The automatically generated code could be a complete computation itself, or could
include calls to existing numerical libraries. The symbolic component then compiles,
loads and executes the code. The numerical results could either be given to the user,
or used as part of further symbolic analysis.

A FRAMEWORK FOR GENERAL INTEGRATION

As discussed in the previous section the existing approaches towards integrated
solvers do not provide a solution to the requirement of a general integration
environment. The aim of the proposed approach is to design a framework for
integrating solvers in a general way without restricting them to specific application
areas. We are proposing to build a common environment for using existing CASs and
numerical library routines to enable the users to access the functionality of both
interactively.

Most of the CASs available today are self-contained systems for general
requirements. But a problem arises when an application requires extensive
mathematical calculations, which are not provided by the embedded mathematical
routines. We believe that the best way to overcome this restriction is to build an
interface from which users can use the functions provided by both symbolic and
numerical solvers interactively.

The most general solution would have many CASs and numerical libraries working
under a common command level. With this in mind, the aim of this section is to show
how such an environment can be developed using a single CAS and some numerical
library routines.

A perfect automated programming environment would automatically transform the

algebraic problem into efficient symbolic and numerical programs. It would select the
required CAS functions, guide the CAS to do the simplifications, select the necessary

16

numerical routines and do the required transformations. Though such an automated
system is the ideal, it is more realistic to assume some user interaction, with the user
supplying information to decide which functions are needed in CASs, the extent to
which these functions can be applied, and the type of transformations required. The
knowledge given by an expert user can to a certain extent be replaced by a rule-base.

Among the reasons for not totally excluding the human interaction are the following:

e Accuracy versus speed tradeoff: the choice of algorithms may depend on the
desired accuracy of the results, or on a user-imposed execution time limit.

e Indeterminacy of the rule-base: the situation where more than one algorithm is
applicable, leaving the choice to the user is certainly preferable to imposing a
selection rule not suggested by the problem at hand.

e Flexibility: new algorithms can be added and tested.

The self-contained nature of CASs requires efficient and effective techniques of
transformation methods from problems to CASs and of partial results from these to
numerical library routines. The common features of various application domains will
be evaluated and then transformation rules to use the required symbolic and numerical
methods will be defined. Figure 1 shows a diagrammatic representation of the
proposed system.

The proposed system has to make use of the defined functions of CASs to suit the
requirements of the given task, decide the extent to which symbolic simplification can
be applied, make a correspondence between the output of CAS and the input to the
numerical library routines; and also to provide for human interaction, where
necessary.

The functionality of such a system will be illustrated using a case study from linear
optimisation. Existing work by Manocha and Canny [30] on using symbolic and
numerical calculations in solving the problem of inverse kinematics in robotics is
another good example. Since the proposed method is general, it can be extended to
handle problems from any number of application areas.

Description of Functions:
The various steps need to be performed by the proposed system are described below.

Problem Specification: This is the phase in which the user specifies the problem to be
solved in mathematical terms.
Example: Solve apde
Subject to boundary and initial conditions
Where apde and boundary and initial conditions are valid mathematical
expressions.

Pre-processing: The system simplifies the equations given where possible and
transforms them to a standard type. This is required to ensure the necessary degree of
uniformity in the problem specification in order to find solution methods.

Example: Cancel identical factors from the coefficient and right hand side of a PDE.

17

Problem Specification

Yes

lysis of the p to
the symbolic and/or numerical
manipulations required?

i Convert the problem into the

onve T
input format of CAS input format of the numerical

routines

Further symbolic/numeric
simplification is necesarry

CAS
simplification manipulation

- Analyse the partially Analyse the results
simplified results from from the numerical {—
3 the CAS library routines
No further
No further : -
simplfication required simplification

numerical/ graphical form
Figure 1 — Flow diagram of the proposed system

Problem Analysis and Algorithm Selecti‘on:

Problem Analysis
The system analyses the problem to identify the “type” of the problem. (E.g. In PDEs

whether the given PDE is hyperbolic, parabolic or elliptic by analysing the
discriminant.) Also the system must check whether the problem is well defined, i.e.
whether it has a unique solution. Inappropriate specifications should be detected at
this stage. As far as possible the analysis should be done using symbolic methods
rather than resolving to numerical calculations.

Example: The possible geometry of the boundary conditions depends on the type of
PDE; inappropriate boundary conditions should be rejected at this stage.

Algorithm Selection

The complete problem specification given by the user should then be passed to a
knowledge base in order to find a suitable solution algorithm. Whenever the problem
specification is incomplete the system ought to prompt the user to give more
information. Also if there are more than one solution algorithm available the system
should seek assistance from the users in order to make the decision.

18

If the system is to be useful for the users unfamiliar with CASs and numerical
libraries there has to be a technique to decide the method of solution suitable for the
given problem. We propose to achieve this by building up a knowledge base. The
mathematical solutions that can be used depend very much on the nature of the
parameters in the given equations.

For example the methods that can be used to solve a system of equations given by Ax
= b depend on the size and the characteristics of 4. The database will have the
solution methods needed for all the cases of A. The user need not be aware of the
different solution methods. These decisions can be handled by CASs. The advantage
of using CASs in selecting the algorithm is that the analysis of the parameters can be
done efficiently using symbolic manipulation.

In order to implement the solution the algorithm has to be properly analysed to
identify the sections that can be implemented symbolically. One disadvantage of
using only one CAS is that the level of symbolic manipulation that can be achieved is
restricted to the functions of that CAS. Providing an interface that can include more
than one CAS would help to overcome this restriction.

Implementation of the Solution: The outcome of the problem analysis phase is either
a solution method, or the system has not been able to find one, in which case the
system ought to seek the user's help. Once the algorithm has been selected, the system
has to pass the required parameters to these sub routines. When the problem analysis
phase has identified the required algorithm, the next step is to implement it using
symbolic and numerical solvers. A major problem faced in integrating the solvers is
the closed nature of CASs. CASs are developed for end user interaction and therefore
itis hard to use them in any other platform to behave as intermediate systems.

The design issues related to calling the symbolic and/or numerical sub routines are not
discussed in this paper.

Modularity and Re-usability: An advantage of the proposed method is these sub
routines are not specific to any method of solution. The same subroutine can be used
by more than one method of solution.

Partially simplified results from the subroutines may be reused for instance when a
formula resulting from symbolic manipulation is evaluated repeatedly with different
sets of parameters. This saves time which could otherwise have to be spent on redoing
the time consuming symbolic preprocessing.

Evaluation of Results: The idea here is to use the extensive graphical capabilities of
CAS:s to present the results in a user friendly and easy to analyse method. Also users
may want to rerun or use a different solution method after evaluating the results. We
aim to provide facility for re-evaluating partial results where necessary. This enables
the user to change the algorithm or reformulate part of the problem while retaining
reusable structures as possible.

19

Implementation Issues

Integrating Solvers
As described earlier the system design involves designing a method for integration of

CAS and numerical routines and providing means of user interaction. The integration
between different solvers can be achieved in many ways. A very general approach is
to build up a common interface to communicate with the solvers. This facilitates a
complete integration transparent to users (Figure 2).

USER INTERFACE

COMMON PLATFORM
(GLUE)

Solver 1 Solver 2 Solver N

Figure 2: Overview of the system architecture

The common platform can be designed in a modular way to achieve the following

functions.

e Communication with the solvers: passing them the sub-problems to be solved,
getting the results and passing these results onto other solvers (if necessary),
passing information between solvers, etc.

e Synchronisation of the solvers, formulating the output from partial solutions
received from solvers.

User interaction with the user in order to get the necessary user intervention.
Pattern matching, transformations etc. between the output from one solver and
input to another.

These functions can be achieved by implementing the common command level in the
way of a submodule architecture. The submodule architecture will facilitate
modifications to the system easily.

Users will use a common language to give the instructions to the system and the
system will, depending upon the user instructions, issue the commands to solvers. The
matching between these two will have to be done by the submodule. For example:

User
differentiate xxx
v

iff
Solvers give ma'ple (Cliff xxx)

The front end of the system may be implemented either as a part of a knowledge base

or the language of the symbolic solver used. Examples for both techniques are among
the systems discussed under existing coupled systems.

20

These implementation issues need to be discussed in detail at implementation stage.
Such a detailed description of system design will have to also address the following
issues of <

e identifying all the required data types

e how to define the abstract data types (ADTs)

e how to implement these data types etc.

Use of a knowledge base

A knowledge base oriented approach can be used to select the appropriate algorithms.
The knowledge base that can be used here is based on a database of solution
algorithms indicating the symbolic and numerical subroutines and under which
conditions each of them is suitable. The knowledge can be extracted from presently
available algorithms. Then an expert system can be built to access the knowledge
base.

Knowledge bases for the integration of symbolic and numerical methods have been
considered by many researchers [26]. Russo, Peskin and Kowalski [27] have shown
how to use a knowledge based system to automatically generate the numerical
programs for the solution of problems based on continuous partial differential
equations. A CAS called PRESS (PRolog Equation Solving System) [28] is used for
symbolic manipulations. Re-write rules for symbolic simplifications are written in
PROLOG. The problem is analysed by the knowledge based system and then a
numerical method is selected based on the problem characteristics. The system uses
symbolic methods to discretise and rearrange the set of equations to obtain a form
suitable for the numerical method. Mutrie, Char and Bartels [29] have also discussed
the use of a knowledge based system in combining symbolic algebra and numerical
computations. They have also given attention to expression optimising in such
systems. Techniques similar to these can be used in the proposed method to select the
algorithms required.

Case Studies

Newton's Method for Unconstrained Optimisation
This example shows how manual calculations can be achieved symbolically and how

such symbolic solutions can then be used in numerical methods.

Problem: ,
Find the optimum value of a given expression with n variables without any
constraints. This is called unconstrained optimisation.

Minimise {g(x) | x € R"}
In Newton's method, we start with an initial guess for the set of variables and keep on
changing these values in order to minimise the function value. Let g (x;) be the
given function.

Algorithm:
It is assumed that an initial estimate x ‘°’ of x'* is known.
Step 1: Set k=0
Step 2: Compute g'*' and G'* from
g = ag(x™) (i=1,..,n)
61;'™ = 81059 (x'™) (i=1,..,n)

21

' by solving the system of linear equations:

(k)
|

Step 3: Compute p

Gy Mp® =g

Step 4: Compute x‘**1 =x* 4p

Step 5: Check whether p'*’ < required tolerance, if so stop;
otherwise set k =k+1 and go to step 2.

(k)

Implementation:
The Symbolic computing tools such as Maple [10] can perform Step 2 (or rather the

symbolic partial differentiation). So we can have the grad (9:™) and Hessian (G;; ')
and also inverse of the Hessian matrix ([G;; *’]™") in symbolic form as output from a
Maple session. Maple allows the users to convert output to a Fortran 77 format. Then
we can make use of numerical methods to perform the rest of the algorithm.

CONCLUSION

We have proposed a method that can be used to implement an environment to
combine symbolic and numerical methods in solving equational systems. We have
implemented the proposed method with some examples. With the help of these
examples we have identified the requirements of the different phases of the method.
However this paper does not include the extensive implementation details of these
phases. The proposed method allows the users to interactively use the features of both
symbolic and numerical solvers in many application areas.

REFERENCES:

[11 W Press, B Flannery, S Teukolsky, and W Vetterlin, Numerical Recipes: The
Art of Scientific Computing, Cambridge University Press, 1989.

[2] C Lawson, R Hanson, D Kincaid, and F Krough, "Basic Linear Algebra
Subprograms for Fortran usage", in ACM transactions on Mathematical
Software, pages 308--323, September 1979.

[3]1 J Dongarra, J Croz, S Hammarling, and I Duff, "A set of level 3 Basic Linear
Algebra Subprograms", in ACM Transactions on Mathematical Software,
March 1990.

[4] J Dongarra and S Ostrouchov, LAPACK Working Note 81 - Quick Installation
Guide for LAPACk on Unix Systems, Technical report, University of Tennessee,
1994.

[5] E Anderson and et.al. LAPACK Users' Guide: 2nd Edition, SIAM, 1995.

[6] R Barrett, M Berry, T F Chan,] Demmel, J Donato, J Dongarra, V Eijkhout, R
Pozo, C Romine, and H Van der Vorst, Templates for the Solution of Linear
Systems: Building Blocks for lterative Methods, 2nd Edition, SIAM,
Philadelphia, PA, 1994.

[7] K Schulze and C Cryer, "NAXPERT: a prototype expert system for numerical
software", in SIAM Journal of Scientific and Statistical Computing, May 1988.

22

(8]

(]

[10]

(11]

[12]

(13]

[14]

(15]

[16]

(17]

(18]

(19]

[20]

M Dewar, "Using computer algebra to select numerical algorithms", in ISSAC
92,1992.

G Rayna, REDUCE: software for algebraic computation, Springer-Verlag,
1987.

B Char. K Geddes, G Gonnet, B Leong, M Monagan, and S Watt, Maple V -
Library Reference Manual, Springer-Verlag, 1991.

S Wolfram, Mathematica: A System for Doing Mathematics by Computer,
Addison-Wesley Publishing Company, 1991.

E Engeler and R Mader, "Scientific Computation: The Integration of Symbolic,
Numeric and Graphic Computation", in EUROCAL '85: European Conference
on Computer Algebra, Vol.1. Invited lectures, Lecture notes in computer science
203, B Buchberger, editor, Springer-Verlag, 1984, pages 185-200.

D Bayer and M Stillman, "The design of Macaulay: A system for computing in
algebraic geometry and commutative algebra", in proceedings of the 1986
Symposium on Symbolic and Algebraic Computation: SYMSAC '86, Bruce W
Char, editor, Association for Computing Machinery: New York, 1986.

J Rice and R Boisvert, Solving Elliptic Problems using ELLPACK, Springer-
Verlag, 1984.

S Weerawarna, E N Houstis, and J R Rice, "An interactive symbolic-numeric
interface to parallel ELLPACK for building general PDE solvers", in Symbolic
and Numerical Computation for Artificial Intelligence, Academic Press, 1992,
pages 303-321.

E Kant, "Synthesis of mathematical modeling software", in JEEE Software, May
1993.

R Akers, E Kant, C Randall, S Steinberg, and R Young, Problem solving
environments and solution of partial differential equations, Version 1, Technical
report, SciComp Inc., 1997.

P Fritzson, L Viklund, J Herbert, and D Fritzson, "Industrial application of
object-oriented mathematical modelling and computer algebra in mechanical
analysis", in TOOLS EUROPE '92, 1992.

V Engleson, P Fritzson, and L Viklund, “Variant handling, inheritance and
composition in the ObjectMath computer algebra environment™ in DISCO '93,
1993.

P lglio, Applying software components technology to computer algebra,

Technical report, NAG/FRISCO Consortium, 1997.
http://extweb.nag.co.uk/projects/FRISCO/reports/component.ps.

23

(21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

N Kajler, “CAS/PI: a portable and extensible interface for computer algebra
systems”, in ISSAC 92, 1992.

N Kajler, “User interfaces for symbolic computation: a case study”, in UIST ‘93,
1993.

S Dalmas, M Gaetano, and S Watt, “An Openmath 1.0 implementation”, in
ISSAC '97, 1997.

S Dalmas, M Gaetano, and A Sausse, ASAP: a protocol for symbolic
computation systems, Technical report, INRIA, Sophia-Antipolis, March 1994.

S Gray, N Kajler, and P Wang, “MP: A protocol for efficient exchange of
mathematical expressions™, in ISSAC ‘94, 1994.

N Jacobstein, C Kitzmiller, and J Kowalik, "Integarting symbolic and numerical
methods in knowledge-based systems: Current status, future prospectus, driving
events", in Coupling Symbolic and Numerical Computing in Expert Systems II, J
Kowalik and C Kitzmiller, editors, Elsevier Science Publishers, 1988.

M Russo, R Peskin, and A Kowalski, "Using symbolic computation for the
automatic development of numerical programs", in Coupling Symbolic and
Numerical Computing in Expert Systems 11,] Kowalik and C Kitzmiller, editors,
Elsevier Science Publishers, 1988.

A Bundy and B Welham "Using Meta-Level Inference for Selective
Application of Multiple Rewrite Rules in Algebraic Manipulation”, in 5tk
Conference on Automated Deduction, Lecture notes in computer science 87, W
Bibeland and R Kowalski, editors, Springer-Verlag, July 1980 pages 24--38.

M Mutrie, B Char, and R Bartels, "Expression optimization in a symbolic-
numeric interface", in Coupling Symbolic and Numerical Computing in Expert
Systems I,] Kowalik and C Kitzmiller, editors, Elsevier Science Publishers,
1988.

D Manocha and J Canny, "Real time inverse kinematics for general 6R
manipulators", Technical report, University of California, Berkeley.

24

